Використання автоматичної сегментації за допомогою гармонічного поля для розпізнавання образу зубів у щелепі

dc.citation.epage99
dc.citation.issue1
dc.citation.journalTitleАвтоматика, вимірювання та керування
dc.citation.spage93
dc.citation.volume2
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.authorВойченко, М. В.
dc.contributor.authorТатарин, В. Я.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-03-07T10:43:27Z
dc.date.available2023-03-07T10:43:27Z
dc.date.created2020-12-30
dc.date.issued2020-12-30
dc.description.abstractВажливою попередньою процедурою в автоматизованій ортодонтії є точне сегментування зубів за 3Д-моделлю щелепи, що повинна передбачати якомога менше ручних операцій. Мотивована ультрасучасними загальними методами сегментації сіток, в яких використано теорію гармонічного поля для виявлення сегментів, досліджується нова, спрямована на стоматологію, структура сегментації зубних сіток. Завдяки спеціально розробленій схемі зважування та стратегії апріорних знань для керування гармонічних обмежень, за цим методом можна ефективно визначати межі зубів
dc.description.abstractAn important preliminary procedure in automated orthodontics is the precise segmentation of the teeth from the 3D model of the jaw, which should include as few manual operations as possible. Motivated by ultramodern general methods of mesh segmentation, which have adopted the theory of harmonic field to identify segments, this article investigates a new, aimed at dentistry structure of dental mesh segmentation. Thanks to a specially designed weighing scheme and a priori knowledge strategy for managing harmonic constraints, this method can effectively determine the boundaries of the teeth.
dc.format.extent93-99
dc.format.pages7
dc.identifier.citationВойченко М. В. Використання автоматичної сегментації за допомогою гармонічного поля для розпізнавання образу зубів у щелепі / М. В. Войченко, В. Я. Татарин // Автоматика, вимірювання та керування. — Львів : Видавництво Львівської політехніки, 2020. — Том 2. — № 1. — С. 93–99.
dc.identifier.citationenVoichenko M. V., Tatarin V. Ia. (2020) Vykorystannia avtomatychnoi sehmentatsii za dopomohoiu harmonichnoho polia dlia rozpiznavannia obrazu zubiv u shchelepi [Using automatic segmentation using the harmonious field to recognize the image of teeth in the jaw]. Automation, Measuring and Management (Lviv), vol. 2, no 1, pp. 93-99 [in Ukrainian].
dc.identifier.doihttps://doi.org/10.23939/amm2020.01.093
dc.identifier.issn2707-2916
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57541
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofАвтоматика, вимірювання та керування, 1 (2), 2020
dc.relation.ispartofAutomation, Measuring and Management, 1 (2), 2020
dc.relation.references1. Wu K., Chen L., Li J., and Zhou Y. “Tooth segmentation on dental meshes using morphologic skeleton”, Computers and Graphics, vol. 38, no. 1, pp. 199–211, 2014.
dc.relation.references2 Fan. L., Liu L., and Liu K. “Paintmeshcutting”, ComputerGraphicsForum, vol. 30, no. 2, pp. 603–611, 2011.
dc.relation.references3. Rahul Venkatram (2000), “3shape”, available at: https://www.3shape.com/ (accessed 1 October 2020).
dc.relation.references4. Lee Y., Lee S., Shamir A., Cohen-Or D. and Seidel H.-P. “Meshs cissoring with minima rule and part salience”, Computer Aided Geometric Design, vol. 22, no. 5, pp. 444–465, 2005.
dc.relation.references5. Ji Z., Liu L. and Chen Z. “Easy mesh cutting”, in Computer Graphics Forum, vol. 25, pp. 283–291, Blackwell, London, UK, 2006.
dc.relation.references6. Katzand S., Tal A. “Hierarchical mesh decomposition using fuzzy clustering and cuts”, ACM Transactions on Graphics, vol. 22, no. 3, pp. 954–961, 2003.
dc.relation.references7. Lai Y.-K., Hu S.-M., Martin R. R., and Rosin P. L. “Rapid and effective segmentation of 3D models using random walks,”ComputerAidedGeometricDesign, vol. 26, no. 6, pp. 665–679, 2009.
dc.relation.references8. L. Shapira, A. Shamir, and D. Cohen-Or, “Consistent mesh partitioning and skeletonisation using the shape diameter function”, VisualComputer, vol. 24, no. 4, pp. 249–259, 2008.
dc.relation.references9. Attene M., Falcidieno B. and Spagnuolo M. “Hierarchical mesh segmentation based on fitting primitives”, Visual Computer, vol. 22, no. 3, pp. 181–193, 2006.
dc.relation.references10. Koschan A. F., “Perception-based 3D triangle mesh segmentation using fast marching watersheds”, in Proceedings of the IEEE Computer Society Conference on ComputerVision and Pattern Recognition, vol. 2, pp. II-27–II-32, IEEE, June 2003.
dc.relation.references11. Shamir A. “A survey on mesh segmentation techniques”, Computer Graphics Forum, vol. 27, no. 6, pp. 1539–1556, 2008.
dc.relation.references12. Sheng-hui Liao, Shi-jian Liu, Bei-ji Zou, Xi Ding, Ye Liang, and Jun-hui Huang, “Automatic Tooth Segmentation of Dental Mesh Based on Harmonic Fields”, vol. 38, no. 1, 2014.
dc.relation.references13. Lisa Avila, Charles Law (1998), “The Visualization Toolkit An Object-Oriented Approach to 3D Graphics”, available at: https://vtk.org/ (accessed 1 October 2020).
dc.relation.references14. Kumar Y., Janardan R. and Larson B. “Automatic feature identification in dental meshes,” ComputerAided Design and Applications, vol. 9, no. 6, pp. 747–769, 2012.
dc.relation.references15. Pierre Zoppitelli (2008), “Eigen”, available at: http://eigen.tuxfamily.org/index.php?title=Main_Page (accessed 1 October 2020).
dc.relation.references16. Chen Y., Davis T. A., Hager W.W. and Rajamanickam S. “Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate”, ACM Transactionson Mathematical Software, vol. 35, no. 3, article 22, 2008.
dc.relation.references17. Davis T. A. User Guide for CHOLMOD: A Sparse Cholesky Factorization and Modification Package, Department of Computer, Information Science and Engineering, University of Florida, Gainesville, Fla, USA, 2014.
dc.relation.references18. Alban Denoyel (2012), “3D models”, available at: https://sketchfab.com/ (accessed 1 October 2020).
dc.relation.referencesen1. Wu K., Chen L., Li J. and Zhou Y. “Tooth segmentation on dental meshes using morphologic skeleton”, Computers and Graphics, vol. 38, no. 1, pp. 199–211, 2014. https://doi.org/10.1016/j.cag.2013.10.028
dc.relation.referencesen2. Fan L., Liu L., and Liu K. “Paintmeshcutting”, ComputerGraphicsForum, vol. 30, no. 2, pp. 603–611, 2011. https://doi.org/10.1111/j.1467-8659.2011.01895.x
dc.relation.referencesen3. Rahul Venkatram (2000), “3shape”, available at: https://www.3shape.com/ (accessed 1 October 2020).
dc.relation.referencesen4. Lee Y., Lee S., Shamir A., Cohen-Or D., and Seidel H.-P. “Meshs cissoring with minima rule and part salience”, Computer Aided Geometric Design, vol. 22, no. 5, pp. 444–465, 2005. https://doi.org/10.1016/j.cagd.2005.04.002
dc.relation.referencesen5. Ji Z., Liu L. and Chen Z. “Easy mesh cutting”, in Computer Graphics Forum, vol. 25, pp. 283–291, Blackwell, London, UK,2006. https://doi.org/10.1111/j.1467-8659.2006.00947.x
dc.relation.referencesen6. Katzand S. A. Tal, “Hierarchical mesh decomposition using fuzzy clustering and cuts”, ACM Transactions on Graphics, vol.22, no. 3, pp. 954–961, 2003. https://doi.org/10.1145/882262.882369
dc.relation.referencesen7. Lai Y.-K., Hu S.-M., Martin R. R. and Rosin P. L. “Rapid and ef ective segmentation of 3D models using random walks”, ComputerAidedGeometricDesign, vol. 26, no. 6, pp. 665–679,2009. https://doi.org/10.1016/j.cagd.2008.09.007
dc.relation.referencesen8. L. Shapira, A. Shamir, and D. Cohen-Or, “Consistent mesh partitioning and skeletonisation using the shape diameter function”, VisualComputer, vol. 24, no. 4, pp. 249–259, 2008. https://doi.org/10.1007/s00371-007-0197-5
dc.relation.referencesen9. M.Attene, B. Falcidieno, and M. Spagnuolo, “Hierarchical mesh segmentation based on fitting primitives”, Visual Computer, vol.22, no. 3, pp. 181–193, 2006. https://doi.org/10.1007/s00371-006-0375-x
dc.relation.referencesen10. Koschan A. F. “Perception-based 3D triangle mesh segmentation using fast marching watersheds”, in Proceedings of the IEEE Computer Society Conference on ComputerVision and Pattern Recognition, vol. 2, pp. II-27–II-32, IEEE, June 2003.
dc.relation.referencesen11 Shamir. A. “A survey on mesh segmentation techniques”, Computer Graphics Forum, vol. 27, no. 6, pp. 1539–1556, 2008. https://doi.org/10.1111/j.1467-8659.2007.01103.x
dc.relation.referencesen12. Sheng-hui Liao, Shi-jian Liu, Bei-ji Zou, Xi Ding, Ye Liang, and Jun-hui Huang, “Automatic Tooth Segmentation of Dental Mesh Based on Harmonic Fields” vol. 38, no. 1, 2014.
dc.relation.referencesen13. Lisa Avila, Charles Law (1998), “The Visualization Toolkit An Object-Oriented Approach to 3D Graphics”, available at: https://vtk.org/ (accessed 1 October 2020).
dc.relation.referencesen14. Kumar Y., Janardan R. and Larson B. “Automatic feature identification in dental meshes,” ComputerAided Design and Applications, vol. 9, no. 6, pp. 747–769, 2012. https://doi.org/10.3722/cadaps.2012.747-769
dc.relation.referencesen15. Pierre Zoppitelli (2008), “Eigen”, available at: http://eigen.tuxfamily.org/index.php?title=Main_Page (accessed 1 October 2020).
dc.relation.referencesen16. Chen Y., T. Davis A., Hager W. W. and Rajamanickam S. “Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate”, ACM Transactionson Mathematical Software, vol. 35, no. 3, article 22, 2008. https://doi.org/10.1145/1391989.1391995
dc.relation.referencesen17. Davis T. A. User Guide for CHOLMOD: A Sparse Cholesky Factorization and Modification Package, Department of Computer, Information Science and Engineering, University of Florida, Gainesville, Fla, USA, 2014.
dc.relation.referencesen18. Alban Denoyel (2012), “3D models”, available at: https://sketchfab.com/ (accessed 1 October 2020).
dc.relation.urihttps://www.3shape.com/
dc.relation.urihttps://vtk.org/
dc.relation.urihttp://eigen.tuxfamily.org/index.php?title=Main_Page
dc.relation.urihttps://sketchfab.com/
dc.relation.urihttps://doi.org/10.1016/j.cag.2013.10.028
dc.relation.urihttps://doi.org/10.1111/j.1467-8659.2011.01895.x
dc.relation.urihttps://doi.org/10.1016/j.cagd.2005.04.002
dc.relation.urihttps://doi.org/10.1111/j.1467-8659.2006.00947.x
dc.relation.urihttps://doi.org/10.1145/882262.882369
dc.relation.urihttps://doi.org/10.1016/j.cagd.2008.09.007
dc.relation.urihttps://doi.org/10.1007/s00371-007-0197-5
dc.relation.urihttps://doi.org/10.1007/s00371-006-0375-x
dc.relation.urihttps://doi.org/10.1111/j.1467-8659.2007.01103.x
dc.relation.urihttps://doi.org/10.3722/cadaps.2012.747-769
dc.relation.urihttps://doi.org/10.1145/1391989.1391995
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Войченко М. В., Татарин В. Я., 2020
dc.subject3Д-модель щелепи
dc.subjectсегментація зубних сіток
dc.subject3D model of the jaw
dc.subjectsegmentation of dental meshes
dc.subject.udc004.41
dc.titleВикористання автоматичної сегментації за допомогою гармонічного поля для розпізнавання образу зубів у щелепі
dc.title.alternativeUsing automatic segmentation using the harmonious field to recognize the image of teeth in the jaw
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2020v2n1_Voichenko_M_V-Using_automatic_segmentation_93-99.pdf
Size:
557.17 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: