Browsing by Author "Генсецький, М. П."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Examination of the thermal efficiency of the solar collector integrated into the light transparent building facade(Видавництво Львівської політехніки, 2020-02-10) Шаповал, С. П.; Желих, В. М.; Венгрин, І. І.; Миронюк, Х. В.; Генсецький, М. П.; Shapoval, Stepan; Zhelykh, Vasyl; Venhryn, Iryna; Myroniuk, Khrystyna; Gensetskyi, Mykola; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityОписано перспективність розвитку напрямку сонячної енергетики в Україні. Інтерес до ефективного використання сонячного випромінювання сонячними колекторами обґрунтовує актуальність і доцільність досліджень з проблеми використання в них такої енергії. Проаналізовано, що сонячна енергетика залишається найперспективнішим напрямком для генерації теплової енергії внаслідок: встановленого обсягу надходження сонячного випромінювання на територію України та зношеність технологічного обладнання, що працють на традиційному органічному паливі. Окрім цього, враховуючи тенденцію побудови скляних фасадів у галузі будівництва, в праці запропонованого сонячний колектор інтегрований в світлопрозорий фасад будівлі з метою економії площі, на яку встановлюються установки сонячних колекторів та збереження викопних видів палива. За інтенсивності імітованого сонячного випромінювання 900 Вт/м2, що потрапляло на поглинаючу поверхню сонячного колектора, температура на виході із сонячного колектора досягала 22,9 ºС. Порівнюючи зміни миттєвої потужності сонячного колектора Qск, Вт/м2 встановлено, що на 60 хв експерименту за інтенсивності імітованого сонячного випромінювання 900 Вт/м2, вона була більшою за 250 Вт/м2. Коефіцієнт корисної дії експериментального сонячного колектора в режимі прямотечії теплоносія в системі за інтенсивності імітованого сонячного випромінювання 900 Вт/м2 досягав ≈33 %. Встановлено, що запропонований сонячний колектор за інтенсивностей, що відповідатимуть потужності сонячного випромінювання в літній період року, в рeжимі прямотечії теплоносія через конструкцію соячного колектора є ефективним джерелом низькопотенційного тепло- постачання. Перспективним напрямом подальших досліджень залишається встановлення ефективності такого колектора за інших інтенсивностей імітованого сонячного випромінювання та за інших режимів роботи теплоносія через конструкцію сонячного колектора в системі сонячного теплопостачання.Item Investigation the exergetic efficiency of refrigerant R290 (propane) application for work of air split-conditioner(Видавництво Львівської політехніки, 2021-06-06) Лабай, В. Й.; Ярослав, В. Ю.; Генсецький, М. П.; Labay, Volodymyr; Yaroslav, Vitaliy; Hensetskyi, Mykola; Національний університет “Львівська політехніка”; Lviv Polytechnic National University; Lviv Technical and Economic College Lviv Polytechnic National UniversityОстаннім часом за кордоном та в Україні для заощадження енергетичних ресурсів ведуться фундаментальні дослідження низки технологій із позицій ексергетичної методології. Тому в splitкондиціонерах ступінь їх енергетичної досконалості потрібно визначати на основі аналізу їх ексергетичної ефективності. У побутовій холодильній техніці широко застосовується холодоагент R290, що сприяла її енергоощаднішій експлуатації порівняно з іншими холодоагентами. У той самий час у split-кондиціонерах цей холодильний агент не застосовують. Це дало змогу обґрунтувати актуальність дослідницького завдання, що пов’язано з недостатньою інформацією щодо ефективності використання різних холодоагентів у split-кондиціонерах. Для аналізу роботи одноступеневих фреонових холодильних машин, які використовують у splitкондиціонерах, розроблено авторську інноваційну математичну за ексергетичним методом. На цій моделі отримано ексергетичний коефіцієнт корисної дії (ККД) та втрати ексергії в окремих елементах split-кондиціонера на прикладі кондиціонера з номінальною холодопродуктивністю 2500 Вт фірми “Mitsubishi Electric” за стандартних зовнішніх температурних умов на холодоагентах R410A, R32 і холодоагенту R290 (пропану) який запропонували автори для використання у split-кондиціонерах. Виявлено, що за ексергетичним ККД холодильний агент R290 є найефективнішим. Використання холодоагенту R290 порівняно з R410A і R32 збільшила ексергетичну ефективність split-кондиціонера на 9,3 % і 5,1 %, відповідно. Втрати ексергії, встановлені в усіх елементах холодильної машини splitкондиціонера, вказують на необхідність удосконалення обладнання split-кондиціонера, щоб зменшити втрати ексергії в них та загалом збільшити його ексергетичний ККД.Item The use of agricultural biomass as a source for biogas production(Видавництво Львівської політехніки, 2021-06-06) Фурдас, Ю. В.; Козак, Х. Р.; Савченко, О. О.; Луник, М. В.; Генсецький, М. П.; Furdas, Yuriy; Kozak, Khrystyna; Savchenko, Olena; Lunyk, Mariia; Hensetskyi, Mykola; Національний університет “Львівська політехніка”; Техніко-економічний коледж Національного університету “Львівська політехніка”; Lviv Polytechnic National University; Technical and Economic College Lviv Polytechnic National UniversityУкраїна має значні обсяги земельних ресурсів для сільського господарства та здатна забезпечити своє населення не тільки їжею, але і сировиною для біоенергетики. Як сировина в біоенергетиці можуть бути використані відходи та сільськогосподарські залишки, які утворюються під час збирання сільськогосподарських культур та в процесі їх переробки, зокрема солома злакових культур, зернобобових культур, насіння кукурудзи та соняшнику, лушпиння соняшнику, м’якоть цукрових буряків тощо. Для енергетичних потреб біомасу безпосередньо спалюють або переробляють на тверде, рідке або газоподібне паливо. Під час виробництва газоподібного палива із сільськогосподарських відходів утворюється не тільки джерело енергії – біогаз, але й високоякісні добрива, які можна використовувати для власних потреб чи продавати фермерським господарствам. Процес виробництва біогазу відбувається у біореакторах, конструкції яких доволі різноманітні й відрізняються за формою, матеріалом, способами змішування та нагрівання біомаси, обсягом переробки сировини. У цій статті для виробництва біогазу із сільськогосподарської біомаси запропоновано конструкцію біореактора, що дає змогу ефективно змішувати та прогрівати органічну сировину для підвищення ефективності роботи біореактора та збільшення виходу біогазу. Аналітичні дослідження показали, що кількість виробленого біогазу залежить від виду сировини, її органічної та вологісної складової, а також часу бродіння. Найбільшу кількість виробленого біогазу отримано протягом 10 днів з дати завантаження органічної біомаси. Встановлено, що максимальна кількість біогазу утворюється із трав’яного та зернового силосу, вихід біопалива становить 1,76 м 3. Найменша кількість біогазу утворюється з ріпакового силосу – 0,33 м3, а також силосного бурякового листя – 0,43 м3.