Browsing by Author "Ляшко, Н. І."
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Asymptotic analysis of the Korteweg–de Vries equation by the nonlinear WKB technique(Видавництво Львівської політехніки, 2021-03-01) Ляшко, С. І.; Самойленко, В. Г.; Самойленко, Ю. І.; Ляшко, Н. І.; Lyashko, S. I.; Samoilenko, V. H.; Samoilenko, Yu. I.; Lyashko, N. I.; Київський національний університет імені Тараса Шевченка; Інститут кібернетики ім. В. М. Глушкова НАН України; Taras Shevchenko National University of Kyiv; V. M. Glushkov Institute of Cybernetics of the National Academy of Sciences of UkraineДана стаття стосується побудови асимптотичних солітоноподібних розв’язків для рівняння Кортевега–де Фріза зі змінними коефіцієнтами та малим параметром при старшій похідній. Такі асимптотичні розв’язки вивчаються для широкого класу рівнянь з частинними похідними, які отримуються при математичному моделюванні процесів і явищ для випадку неоднорідних (за просторовою і часовою змінними) середовищ за наявності малої дисперсії і які є узагальненням певних інтегровних моделей. Шуканий розв’язок будується за допомогою нелінійного методу ВКБ, відповідно до якого асимптотичний розв’язок зображується у вигляді суми регулярної і сингулярної частин асимптотики. Якщо регулярна частина такого наближеного розв’язку математично описує фон, на якому відбувається хвильовий процес, то сингулярна частина цього розв’язку відображає характерні особливості, які пов’язані із солітонними властивостями рівняння Кортевега–де Фріза. Розглядається новий тип асимптотичних солітоноподібних розв’язків, коли головний доданок сингулярної частини шуканого асимптотичного розв’язку є швидко спадною функцією фазової змінної τ, а інші доданки є функціями сходинкового типу, тобто мають певну асимптотику на нескінченності. З огляду на ці властивості побудований асимптотичний розв’язок називається асимптотичним солітоноподібним розв’язком сходинкового типу. Представлено алгоритм побудови асимптотичних розв’язків даного типу, детально описано знаходження регулярної і сингулярної частин асимптотики, встановлено точність, з якою головний член побудованого асимптотичного розв’язку задовольняє вихідне рівняння.