Browsing by Author "Маліцький, А."
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Comparison of transformation 3D scans(Видавництво Львівської політехніки, 2017-03-28) Маліцький, А.; Malitskyi, A.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityМетою цього дослідження є практичне визначення достовірності одержаних результатів з використанням повністю автоматичного методу орієнтування сканів. Одержані результати визначають у двох різних програмних засобах. Одержані результати порівнюють з результатами орієнтування сканів методом суміщення спільних точок з використанням спеціальних марок – 3D-сфер. Методика. Запропоновано методику, яка ґрунтується на створенні декількох станцій сканування на короткій відстані та однієї на порівняно більшій відстані. Одна з дальних від об’єкта сканування станцій визначатиметься базисною. Ця станція має охопити усі опорні точки та об’єкти, по яких проводитиметься реєстрація сканів, а також більшу частину сканованого об’єкта. Контроль одержаних результатів проводитиметься шляхом моделювання поверхні 3D-сфер та їхнім порівнянням. Результати. У 2015 році під час археологічних розкопок на розі вулиць Краківська–Вірменська виникла потреба зафіксувати залишки історичної забудови. Ці залишки становили стіну протяжністю приблизно 24 м. Для забезпечення повноти відомостей використано наземне лазерне сканування як оптимальний метод 3D-знімання протяжних складних у будові об’єктів. Для мінімального впливу помилки орієнтування сканів та зменшення підготовчих робіт зі сканування використано методику базисного скану з високим рівнем перекриття та досліджено результати орієнтування сканів. Наукова новизна. Запропонована методика проведення наземного лазерного сканування забезпечує виконання ітеративного методу пошуку найближчої точки. Спосіб контролю одержаних результатів є найдостовірнішим з практичного погляду, адже ґрунтується на порівнянні розміщення груп точок та 3D-моделювання. Практична значущість. Використання застосованих методів дає змогу значно скоротити час на проведення польових робіт з наземного лазерного сканування, одержати дані з мінімальним впливом помилки реєстрації сканів.Item XML - новий формат обмінного файла для земельного кадастру(Видавництво Львівської політехніки, 2011) Маліцький, А.Досліджено та обґрунтовано проблеми переходу обмінного файла з формату in4 до XML. Особливу увагу приділено структурі та формуванню обмінного файла нового типу. Також згадується питання вибору програм, які забезпечують можливість формування документів нового типу та структури. Автор зіставляє обмінні файли різного формату, визначає їхні переваги та недоліки. Автор статьи исследует и обосновывает проблемы перехода обменного файла формата in4 к XML. Особое внимание уделяет структуре и формированию обменного файла нового типа. Также упоминаетса вопрос выбора программ, содержащих возможность формирования документов нового вида и структуры. Автор сопоставляет обменные файлы различного формата, определяет их преимущества и недостатки. The article explores the problem and justifies the transition from the exchange file format in4 to XML. Particular attention to the structure and formation of a new type of file exchange. Also referred to the question of choice programs that include the possibility of forming a new document type and structure. The author contrasts the exchange of different file types, determine their strengths and weaknesses.Item Аналіз наземних лазерних 3D-сканерів та сфера їх застосування(Видавництво Львівської політехніки, 2014) Маліцький, А.; Лозинський, В.Виконано класифікацію різних типів наземних сканерів і проаналізовано принципи їх роботи. Авторська класифікація покликана пояснити особливості застосування сканерів у різних сферах і допомогти у виборі оптимальних моделей залежно від поставлених цілей.Item Аналіз результатів для створення ортофотопланів та цифрових моделей рельєфу із застосуванням БПЛА TRIMBLE UX-5(Видавництво Львівської політехніки, 2015) Вовк, А.; Глотов, В.; Гуніна, А.; Маліцький, А.; Третяк, К.; Церклевич, А.Метою цієї роботи є аналіз та дослідження можливостей безпілотних літальних апаратів (БПЛА) Trimble UX5 для створення ортофотопланів і цифрових моделей рельєфу (ЦМР), а також виявлення і усунення можливих недоліків під час аерознімання та опрацювання аерознімків. Методика. Перед початком аерознімальних робіт проводилось рекогносцирування місцевості. Для кобрирування та глісади обирали майданчики, які мали відповідні площадні параметри, вказані у технічних характеристиках БПЛА. Для підготовчих проектно-розрахункових робіт використовувалось програмне забезпечення Trimble Access Aerial Imaging, яке інсталювалось у захищений польовий контролер Trimble Tablet, що застосовується для управління UX5. Аерознімання з БПЛА виконувалось цифровою камерою SONY NEX 5R. Оскільки на БПЛА UX5 не передбачено встановлення двохчастотного GPS-приймача для отримування у польоті значень центрів проекцій, то зроблено розряджену планово-висотну прив’язку (ПВП) розпізнавальних знаків. Для оперативного створення ортофотопланів застосовували фотограмметричний модуль Trimble Business Center Photogrammetry Module фірми Trimble, за допомогою якого створювали хмару точок, трикутну нерегулярну сітку (TIN-модель) і план з відображенням горизонталей місцевості, над якою проводилося аерознімання. Для підтвердження можливості застосування цифрового стереофотограмметричного методу розраховано апріорну оцінку точності просторових координат місцевості. Для оцінювання точності на місцевості визначено контрольні точки на трьох експериментальних ділянках. Координати контрольних точок визначали під час проведення ПВП GPS-приймачами Trimble R7 у режимі RTK. Після створення ортофотопланів на них виміряні координати вищеозначених контрольних точок і обчислено середні квадратичні похибки (СКП) відносно координат, виміряних на місцевості. Результати. За аерозніманням, проведеним з висот 150 м, 200 м та 300 м, за отриманими зображеннями, були обчислені СКП положення контурних точок місцевості, які підтверджують можливість застосування літаків моделі Trimble UX5 для складання топографічних планів у масштабах 1:500, 1:1000 та 1:2000 з перерізом горизонталей 0,5-1 м для цих масштабів. Наукова новизна. На підставі критичного аналізу конструкторських та експлуатаційних особливостей БПЛА Trimble UX5 розроблено технологічну схему оцінки придатності БПЛА для аерознімального процесу як за кількісними, так і за якісними параметрами. Це дасть можливість у подальшому оцінювати будь-які моделі БПЛА стосовно застосування їх у цифровому стереофотограмметричному методі створення великомасштабних ортофо¬топланів та топографічних планів. Практична значущість. Застосування БПЛА Trimble UX5 дає можливість знімати території сільської місцевості, отримуючи необхідну точність для складання великомасштабних топографічних і кадастрових планів під час застосування цифрового стереофотограмметричного методу, що дає змогу значно здешевити процес створення вищеозначених планів. Целью данной работы является анализ и исследование возможностей беспилотного летательного аппарата (БПЛА) Trimble UX5 для создания ортофотопланов и цифровых моделей рельефа (ЦМР), а также выявления и устранения возможных недостатков в процессе аэросъемки и обработки аэроснимков. Методика. Перед началом аэросъемочных работ проводилось рекогносцировка местности. Для кабрирования и глиссады выбирались площадки, которые имели соответствующие площадные параметры, указанные в технических характеристиках БПЛА. Для подготовительных проектно-расчетных работ использовалось программное обеспечение Trimble Access Aerial Imaging, которое инсталировалось в защищенный полевой контроллер Trimble Tablet, который применяется для управления UX5. Аэросъемка с БПЛА выполнялась цифровой камерой SONY NEX 5R. Поскольку на БПЛА UX5 не предусмотрено установление двухчастотного GPS-приемника для получения в полете значений центров проекций, то было сделано разреженную планово¬высотную привязку (ПВП) опознавательных знаков. Для оперативного создания ортофотопланов применяли фотограмметрический модуль Trimble Business Center Photogrammetry Module, фирмы Trimble, с помощью которого можно создать облако точек, треугольную нерегулярную сетку (TIN-модель) и план с отображением горизонталей местности над которой проводилась аэросъемка. Для подтверждения возможности применения цифрового стереофотограмметрического метода рассчитано априорную оценку точности пространственных координат местности. Для проведения оценки точности определялись контрольные точки на трех экспериментальных участках. Координаты точек определялись при проведении ПВП GPS - приемниками Trimble R7 в режиме RTK. После создания ортофотопланов на них были измерены координаты вышеуказанных точек и вычислено средние квадратичные погрешности (СКП) относительно координат измеренных на местности. Результаты. По аэросъемке проведенной с высот 150 м, 200 м и 300 м по полученным изображениями были вычислены СКП положения контурных точек местности, которые подтверждают возможность применения самолетов модели Trimble UX5 для составления топографических планов в масштабах 1: 500, 1: 1000 и 1: 2000 с сечением горизонталей 0,5-1 м для этих масштабов. Научная новизна. На основании критического анализа конструкторских и эксплуатационных особенностей БПЛА Trimble UX5 разработана технологическая схема оценки пригодности БПЛА для аэросъёмочного процесса как по количественным так и по качественным параметрам. Это позволит в дальнейшем оценивать любые модели БПЛА относительно их применения в цифровом стереофотограмметрическом методе создания крупномасштабных ортофотопланов и топографических планов. Практическая значимость. Применение БПЛА Trimble UX5 позволяет снимать территории, получая необходимую точность для составления крупномасштабных топографических и кадастровых планов с применением цифрового стереофотограмметрического метода, что позволяет значительно удешевить процесс создания вышеуказанных планов. The purpose of this paper is to analysis and research capabilities of unmanned aerial vehicle (UAV) Trimble UX5 to create orthophotomap and digital elevation models (DEM), as well as identifying and addressing possible shortcomings in the aerial survey and processing of aerial photographs. Methods. Before starting aerosurveying conducted reconnaissance of the area. For nose-up and glide-path elected corresponding surface area on the ground had areal options on listed specifications for the UAV, and satisfy the conditions for launching and landing UAV.For preliminary design and calculation works software was used Trimble Access Aerial Imaging, which install a protected field controller Trimble Tablet, which is used to control UX5.UAV aerial survey was carried out with a digital camera SONY NEX 5R.Since the UAV UX5 stipulated the establishment of two-frequency GPS- receiver for in-flight values of projection centers, it was done discharged horizontal and vertical tie-in markings.For operative creation of orthophotomap used photogrammetric module Trimble Business Center Photogrammetry Module, the company Trimble, with which you can create a point cloud, triangular irregular grids (TIN- model) and plan to display contour lines, terrain over was carried out aerial aerosurveying.To confirm the possibility of using digital stereophotogrammetric method calculated apriori estimate of the accuracy of the spatial coordinates of the area. To assess the accuracy of the terrain defined checkpoints at three pilot sites. Coordinates of points determined during VFR GPS - receivers Trimble R7 mode RTK. After creating orthophotomap they measured the coordinates of the above points and calculated root-mean-square error measured relative to the coordinates on the ground. Results. For aerial survey conducted with a height of 150 m, 200 m and 300 m on the received images were calculated mean square error provisions terrain contour points, which confirm the possibility of using aircraft model Trimble UX5 to produce topographic maps at scales of 1: 500, 1: 1000 and 1: 2000 section 0.5-1 m contour for these scales and 1 m for the third scale. The scientific novelty. Based on a critical analysis of the design and operational features Trimble UX5 UAV developed technological scheme to evaluate the fitness of UAV aerosurveying both quantitative and qualitative parameters. This will enable further evaluate any models UAV regarding their use in digital stereofotohrammetryc method of creating large-scale orthophotomap and topographical plans. The practical significance The use of UAVs Trimble UX5 allows you to take difficult territory, with the required precision to produce large-scale topographic and cadastral plans in the application of digital stereophotogrammetric method that can significantly reduce the cost of the process of creating the above plans.Item Дослідження мобільної системи лазерного сканування STONEX X120GO(Видавництво Львівської політехніки, 2023-06-01) Віват, А.; Горб, О.; Пашкевич, Є.; Маліцький, А.; Назарчук, Н.; Мандзюк, В.; Vivat, A.; Horb, O.; Pashkevych, Y.; Malitskyi, A.; Nazarchuk, N.; Mandziuk, V.; Національний університет “Львівська політехніка”; Харківський національний університет міського господарства; ТОВ “Навігаційно-геодезичний центр”; ПП “Геовіват”; Lviv Polytechnic National University; Kharkiv National University of Urban Economy; LTD Navigation and Geodetic Center; PE GeovivatМета цієї роботи – дослідити точність лазерного сканера Stonex X120GO та можливість його використання для топографічного знімання, вирішення інженерних завдань та створення 3D-моделей. Методика. Використано метрологічний метод порівняння з еталоном. Еталоном були координати, віддалі та перевищення, визначені іншою перевіреною технологією, яка на порядок точніша від досліджуваної. Для визначення точності вимірювання віддалі сканером X120GO використано навчальний геодезичний полігон (НГП) кафедри інженерної геодезії у діапазоні довжин 10–60 м, які визначені технологією TPS (Total Position System) із СКП 2 мм. Еталонні перевищення визначено методом геометричного нівелювання з СКП 1 мм, а абсолютні координати методом GNSS (Global Navigation Satellite Systems) із СКП 5 мм. Для визначення точності 3D-хмари точок досліджуваного сканера також використано наземний лазерний сканер Leica С-10. Результати. Досліджено точність вимірювання СМЛС Stonex X120GO на різних віддалях від 10 до 50 м. За результатами встановлено СКП вимірювання віддалі 10 мм, яка практично не залежить від віддалі. Від віддалі залежить тільки щільність точок на досліджуваній марці. На віддалі 50 м на марці розміром 20 на 17 см було лише 20 точок, що є причиною нерухомого встановлення сканера під час вимірювання віддалі. Визначаючи похибку положення інерційною системою (IMU), проклавши трек завдовжки 15 хв, замаркувавши шість точок по три рази кожну, ми отримали такі максимальне відхилення: в напрямі Х – 3,3 см, в напрямі Y – 2,8 см, в напрямі Z – 0,9 см. Перевірка точності 3D-хмари на семиповерховій будівлі Львівської політехніки, із прив’язкоюза чотирма точками, показала, що абсолютне відхилення від еталонних координат не перевищило 2 см, а локальні перевищення між першим та другим поверхом, порівняно з геометричним нівелюванням, не перевищили 1 см. Такі результати дослідження дали змогу здійснити сканування різних об’єктів природного та штучного походження. Наукова новизна та практична значущість. Запропоновано методику перевірки точності СМЛС вимірюванням еталонних довжин та порівнянням координат, визначених системою IMU. Досліджено вплив довжини треку на точність 3D-хмари точок. За результатами дослідження можна стверджувати про великі перспективи використання СМЛС Stonex X120GO в багатьох галузях народного господарства.Item Класифікація та основні характеристики наземних 3D-сканерів(Видавництво Львівської політехніки, 2012) Романишин, І.; Маліцький, А.; Лозинський, В.Класифіковано різні типи наземних сканерів та проаналізовано принципи їх роботи. Авторська класифікація покликана пояснити особливості застосування сканерів у різних сферах та допомогти у виборі оптимальних моделей залежно від поставлених цілей. Выполнена классификация различных типов наземных сканеров и проанализированы принципы их работы. Авторская классификация призвана объяснить особенности применения сканеров в различных сферах и помочь в выборе оптимальных моделей в зависимости от поставленных целей. This article classifies the various types of terrestrial scanners and examines the principles of their work. Author’ s classification is designed to explain the peculiarities of scanners in various areas and help in selecting optimal models, depending on the goals.