Browsing by Author "Marushchak, U."
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Effective wall structures with use of flax straw concretes(Видавництво Львівської політехніки, 2023-02-28) Новосад, П. В.; Марущак, У. Д.; Позняк, О. Р.; Novosad, P.; Marushchak, U.; Pozniak, O.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityБудівельні технології, які відповідають сучасним вимогам енергоефективності та екології, – це технології зеленого будівництва, близько нуль-енергетичних будівель з біокліматичним дизайном та оптимізованим енергоспоживанням. Виробництво будівельних матеріалів, зокрема теплоізоляційних, частка яких зростає у енергоефективному будівництві, пов’язане із значним енергоспоживанням та викидами вуглекислого газу. Згідно з сучасними тенденціями, перспективними огороджувальними конструкціями в зелених будівлях є конструкції з використанням матеріалів з низьким впливом на довкілля на основі природної сировини та відходів. Проведено оцінку технічних рішень стінових огороджувальних конструкцій житлових індивідуальних будинків із використанням легкого теплоізоляційного бетону на основі костри льону та вапняного в’яжучого із середньою густиною 300–350 кг/м3 для періоду опалювання та охолодження. Показано, що забезпечення необхідних показників зовнішніх стін енергоефективних будівель досягається використанням багатошарових конструкцій із теплоізоляційним шаром костробетону або одношарових стінових конструкцій з костробетону за каркасною технологією будівництва. Такі стінові конструкції відповідають вимогам за приведеним опором теплопередачі за товщини теплоізоляційного шару з легкого костробетону більше ніж 0,25 м та товщини стіни каркасного будинку з теплоізоляційного бетону більше ніж 0,3 м. Високий опір теплопередачі та висока теплова інерційність стін із застосуванням костробетону призводять до зниження втрат теплоти в опалювальний період (23,15–23,24 кВт·год/(м 2 стіни рік)) та надходження сонячного тепла в період охолодження (0,11–0,13 кВт·год/(м 2 стіни рік)), унаслідок чого зменшується споживання енергії на опалення та охолодження будівлі.Item The strength of nanomodified Rapid hardening concretes at elevated temperature(Lviv Polytechnic Publishing House, 2016) Olevych, Yu.; Marushchak, U.; Lviv Polytechnic National UniversityThis paper deals with investigation of nanomodified Rapid hardening concretes with ultrafine mineral additives, polycarboxylate type superplasticizer at elevated temperature. Ultrafine particles of supplementary cementations material relating to microheterogeneous systems are characterized by high values of specific interfacial area and “excess surface energy” and improved thermal stability of cement-based composites due to its high reactivity and particle packing effect.Item Using of silicate materials for sewage sorption treatment from heavy metals(Видавництво Львівської політехніки, 2014) Mazurak, O.; Mazurak, A.; Marushchak, U.; Pozniak, O.The article presents the research results of using different types of silicate minerals, their modified forms for sewage sorption treatment. Their physical and chemical properties, the mechanisms of action and sorption efficiency of the widespread natural minerals are characterized in this paper. Подано результати досліджень використання різних типів силікатних мінералів, їх модифікованих форм для сорбційного очищення стоків. Охарактеризовано їх фізико-хімічні властивості, механізми дії та ефективність сорбції найпоширеніших мінералів.Item Вплив компонентного складу на властивості інженерних цементуючих композитів(Видавництво Львівської політехніки, 2018-02-26) Сидор, Н. І.; Марущак, У. Д.; Маргаль, І. В.; Sydor, N.; Marushchak, U.; Margal, I.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityЗастосування інженерних цементуючих композитів (ECC) – спеціально розробленого класу дисперсно-армованих матеріалів на основі портландцементу – дає змогу підвищити несучу здатність, стабільність при різних статичних та динамічних впливах, а також довговічність будівельних конструкцій завдяки контрольованому процесу тріщиноутворення. Проте в ECC використовують значну кількість цементуючих матеріалів, часто до 70 %, що призводить до суттєвих деформацій усадки, обмеження стабільності розмірів та зростання вартості матеріалу. Досліджено реологічні та міцнісні показники інженерних цементуючих композитів на основі бінарної та потрійних в’яжучих систем за варіювання вмісту дисперсних волокон. Показано, що чсткова заміна золи винесення ультрадисперсними мінеральними добавками з підвищеною поверхневою енергією у складі потрійної в’яжучої системи, використання полікарбоксилатного суперпластифікатора, а також армування структури інженерних композитів дисперсними волокнами в оптимальній кількості підвищують їхні фізикомеханічні властивості як у ранній, так і в пізніші терміни тверднення порівняно з композитами на основі бінарної в’яжучої системи. З використанням комплексу мінеральних добавок, що забезпечує щільне упакування частинок, ранню пуцоланову реакцію з одержанням додаткових продуктів гідратації, коефіцієнт тріщиностійкості зростає до 0,227–0,240 порівняно з 0,216 для ЕСС на основі бінарної в’яжучої системи.Item Вплив підвищених температур на властивості наномодифікованих дисперсно-армованих бетонів(Видавництво Львівської політехніки, 2018-02-26) Марущак, У. Д.; Саницький, М. А.; Олевич, Ю. В.; Marushchak, U.; Sanytsky, M.; Olevych, Y.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityОдним з інноваційних рішень покращення механічних властивостей бетонів в умовах впливу підвищених температур є використання портландцементних матеріалів, модифікованих на наномасштабному рівні. Досліджено вплив комплексного наномоди- фікування полікарбоксилатним суперпластифікатором, ультра- та нанодисперсними мінеральними добавками, а також дисперсного армування термостійкими базальто- вими волокнами на властивості бетонів на основі портландцементу, які через 1 та 7 діб тверднення піддавались дії підвищених температур 200, 400 і 600 °С. Визначено втрату маси, міцність на згин і стиск, пористість, усадку, водопоглинання бетонів після впливу підвищеної температури. Показано, що наномодифіковані бетони характеризуються високою ранньою та стандартною міцністю, підвищеною міцністю після впливу температур у діапазоні від 105 до 600 °С. Міцність на стиск наномодифікованого бетону через 1 і 7 діб тверднення в нормальних умовах і витримування при 400 °С зростає до 89,8 та 107,4 МПа відповідно, при цьому аналогічна міцність контрольного бетону становить відповідно 40,2 та 60,0 МПа. Дисперсне армування термічностійкими базальтовими волокнами забезпечує додаткове підвищення фізико-механічних показників наномодифікованого фібробетону.Item Наномодифіковані швидкотверднучі бетони, армовані дисперсними волокнами(Видавництво Львівської політехніки, 2018-02-26) Марущак, У. Д.; Саницький, М. А.; Королько, С. В.; Marushchak, U.; Sanytsky, M.; Korolko, S.; Національний університет “Львівська політехніка”, кафедра будівельного виробництва; Академія сухопутних військ імені гетьмана Петра Сагайдачного, кафедра електромеханіки та електроніки; Lviv Polytechnic National University, Department of building production; Hetman Petro Sahaidachnyi National Army Academy, Department of Electromechanics and ElectronicsУ статті показано, що одним із інноваційних напрямів одержання швидкотверднучих бетонів з покращеними експлуатаційними властивостями для фортифікаційних споруд, є застосування нанотехнологічних прийомів. Розглянуто проблему підвищення стійкості високоміцних бетонів до дії швидкісного удару шляхом гібридного армування їх структури ультрадисперсними мінеральними добавками та дисперсними волокнами. Представлено результати фізико-механічних та ударних випробувань швидкотверднучих фібробетонів.