Browsing by Author "Medykovskyi, Mykola"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Modeling of energy system dataspace(Publishing House of Lviv Polytechnic National University, 2011) Shakhovska, Natalia; Medykovskyi, MykolaIn this paper the model of an energy system dataspace is described. Описана модель простору даних енергетичної сфери.Item Нейромережевий метод визначення активного складу вітрової електричної станції(Видавництво Львівської політехніки, 2020-03-01) Медиковський, Микола; Мельник, Роман; Дубчак, Максим; Medykovskyi, Mykola; Melnyk, Roman; Dubchak, Maxim; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityУ статті подано результати дослідження можливостей застосування нейронних мереж для розв’язання задачі визначення активного складу вітрової електричної станції (ВЕС) з врахуванням коефіцієнта ефективності кожної вітроелектричної установки (ВЕУ). Здійснено порівняльний аналіз отриманих результатів з відомими методами визначення активного складу ВЕС, такими як: метод динамічного програмування; метод динамічного програмування із обґрунтованим підвищенням заданого навантаження; модифікований метод динамічного програмування. Визначено переваги та недоліки використання кожного з досліджуваних методів, щодо можливості досягнення заданої потужності генерації при максимальному коефіцієнті ефективності вибраних ВЕУ. Встановлено, що при використанні рекурентних нейронних мереж для розв’язання задачі визначення активного складу ВЕС, мінімальний лінійний коефіцієнт варіації різниці між потужністю, яку необхідно генерувати, та реальною потужністю визначеного активного складу ВЕС становить 2,7 %. За тих самих умов застосування інших відомих методів, зокрема модифікованого методу динамічного програмування, забезпечує досягнення цього параметра на рівні 0,05 %. При цьому час розв’язання задачі суттєво збільшується. Шляхом комп’ютерного моделювання встановлено, що за рівних умов час розв’язання задачі за допомогою нейронних мереж – 0,04 с, а за допомогою модифікованого методу динамічного програмування – 3,4 с. Отримані результати забезпечують можливість реалізації ефективних систем підтримки прийняття рішень при управлінні енергетичними потоками.