Browsing by Author "Protsyk, M."
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Estimation accuracy of orthotransformation of space images applying satellite Pleiades-1 by GNSS surveying(Видавництво Львівської політехніки, 2019-02-28) Четверіков, Б.; Ломпас, О.; Процик, М.; Тетерук, Д.; Chetverikov, B.; Lompas, O.; Protsyk, M.; Teteruk, D.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityItem Визначення похибки ЦМР ортотрансформування аерознімків, отриманих із БПЛА на гірську локальну частини смт. Східниця(Видавництво Львівської політехніки, 2019-03-12) Четверіков, Б. В.; Бабій, Л. В.; Процик, М. Т.; Ільків, Т. Я.; Chetverikov, B.; Babiy, L.; Protsyk, M.; Ilkiv, T.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityМета роботи – оцінити величину похибки ортотрансформування аерознімків по висоті, отриманих з безпілотного літального апарату на гірську ділянку смт. Східниця за допомогою додаткової сітки точок ГНСС-знімання. Завдання роботи – проаналізувати різниці висот точок, отриманих за допомогою карти висот із БПЛА і даних ГНСС-знімання. Оцінити розходження реальних координат опорних точок з їх координатами на ортофотоплані. Методика. Запропоновано методику визначення реальної величини висотної похибки ортотрансформування аерознімків, отриманих із БПЛА на гірську місцевість. Створено локальний тестовий майданчик на горі в смт. Східниця розміром приблизно 70´60 метрів, шо входить у створене загальне аерознімання. Тут виконано додаткове ГНСС-знімання і створено мережу точок із координатами через кожен метр. Отриманий ортотрансформований знімок з картою висот за даними аерознімання всієї Східниці й результатами ГНСС-знімання через кожні 50 метрів відкрито в програмному забезпеченні ArcGIS. На аерознімок нанесено шар точок локальної ділянки і порівняно з координатими тих самих точок, отриманих із карти висот. Результати. Порівнюючи висотні показники 87 точок на схилі гори в смт. Східниця, отримані за допомогою ГНСС-знімання, з висотними показниками тих самих точок, взятих із карти висот, створеної за даними аерознімання з безпілотного літального апарата, визначено, що висотні показники точок не дуже відрізняються. Середня квадратична похибка становить 0,39 м. Наукова новизна. Запропоновано методику порівняння висотних показників точок місцевості, отриманих різними методами для визначення величини похибки ортотрансформування аерознімків, отриманих з БПЛА на гірську локальну ділянку смт. Східниця. Практична значущість. Отримані результати величини похибки ортотрансформування аерознімків, отриманих з безпілотних літальних апаратів на окрему гірську частину смт. Східниця, вказують на те, що ортотрансформування аерознімків окремих гірських територій з БПЛА є в зоні допуску.Item Комплексний спосіб визначення елементів внутрішнього орієнтування цифрових знімальних камер(Видавництво Львівської політехніки, 2020-01-22) Глотов, В.; Гуніна, А.; Процик, М.; Hlotov, V.; Hunina, A.; Protsyk, M.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityItem Методика визначення внутрішніх елементів орієнтування та дисторсії для цифрових неметричних знімальних камер(Видавництво Львівської політехніки, 2020-01-22) Глотов, В.; Кравчук, Ю.; Процик, М.; Hlotov, V.; Kravchuk, Y.; Protsyk, M.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityItem Методика створення ГІС концентраційних таборів нацистської Німеччини періоду 1941–1944 рр.(Видавництво Львівської політехніки, 2020-01-22) Четверіков, Б.; Процик, М.; Chetverikov, B.; Protsyk, M.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityItem Результати застосування програмного забезпечення для визначення елементів зовнішнього орієнтування цифрових зображень аеротопографічного знімання з БПЛА(Видавництво Львівської політехніки, 2021-06-22) Фис, М.; Глотов, В.; Гуніна, Г.; Процик, М.; Fys, M.; Hlotov, V.; Hunina, A.; Protsyk, M.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityОднією із проблем застосування БПЛА для високоточного картографування є те, що на цих апаратах неможливо встановити точну систему стабілізації для визначення кутових ЕЗО знімків, у зв’язку з чим виникає потреба розроблення методів точного знаходження ЕЗО. Сьогодні є немало розробок для визначення ЕЗО. Разом з тим, виникає низка питань під час їх практичної реалізації. Це стосується, передусім, спроби підвищення точності отримання координат точок об’єктів на місцевості. Мета. Дослідити можливість запропонованого алгоритму для визначення ЕЗО цифрових знімків, одержаних під час аерознімання з БПЛА. Методика. Основана на визначенні мінімуму функцій (двох типів), отриманих на основі умов колінеарності. Процес визначення ЕЗО реалізується за допомогою програмного забезпечення. Різноманітний набір програм дає можливість виконати такий пошук, а обґрунтоване початкове наближення ЕЗО забезпечує збіжність ітераційного процесу та визначення оптимальних параметрів [Hlotov, 2020; Заварзин, 2013; Березіна, 2018; Ким Хон Ир, 2017]. Результати. Запропонований підхід перевірено на відповідних цифрових зображеннях, отриманих під час аерознімання з БПЛА за контрольними точками, що дало можливість обґрунтувати ефективність запропонованої методики. Значення заданих СКП такі: = 0,15 м, = 0,18 м, = 0,40 м. Після уточнення похибки вони дорівнювали = 0,06 м, = 0,03 м, = 0,25 м. Аналіз наведених результатів підтверджує підвищення точності визначення координат за рахунок уточнення значень ЕЗО відносно отриманих у програмному пакеті Models та за запропонованим алгоритмом. Наукова новизна. Розроблено алгоритм, який дає можливість визначати значення ЕЗО, застосовуючи програмне забезпечення без залучення спеціальних програмних засобів оброблення цифрових зображень. Практична значущість. Передусім це дає можливість підвищити точність визначення ЕЗО для цифрових знімків, отриманих з БПЛА, та істотно розширити коло завдань з використанням БПЛА.Item Розроблення макета та основних функцій програмного модуля візуалізації результатів обробки геопросторових даних(Видавництво Львівської політехніки, 2023-06-01) Четверіков, Б.; Процик, М.; Chetverikov, B.; Protsyk, M.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityМета. Мета дослідження – розроблення макета та визначення основних функцій програмного модуля 3DDEM&RADAR, який зможе будувати загальні 3D-моделі наземних та підземних елементів нерухомих об’єктів історико-культурної спадщини (ОІКС), коригувати межі та охоронні зони об’єкта, а також визначати області інтересу за інфтерферограмою для подальших георадарних досліджень. Методика. Для реалізації поставленої мети роботи складено технологічну схему, що містила три блоки створення функціональних частин модуля: визначення ділянок із інтерферограм; побудова загальної 3D ЦМР та уточнення меж об’єктів історико-культурної спадщини. Для визначення ділянок з інтерферограм, що містять екстремуми вертикальних зміщень, для подальшого георадарного опрацювання було визначено сім кроків із програмуванням відповідних функцій на кожному з них. Для побудови загальної 3D ЦМР, що містила б як наземні, так і підземні елементи об’єктів історико-культурної спадщини, виконано шість кроків. І для уточнення меж об’єктів історико-культурної спадщини за нововиявленими підземними елементами об’єктів використано п’ять кроків. Використання останнього блока програмного модуля можливе лише за умови існування встановлених меж пам’яток. Результати. У результаті досліджень розроблено макет та основні функції програмного модуля візуалізації результатів опрацювання геопросторових даних. Розроблено інтерфейс користувача та основні елементи управління. Макет містить вікна, кнопки, панелі інструментів, графіки та інші компоненти, які допомагають користувачеві взаємодіяти з даними. Розроблено функції, які дають змогу візуалізувати оброблені геопросторові дані. Це різні типи візуалізацій, такі як інтерферограми, графіки, діаграми, тривимірні моделі тощо. Візуалізація допомагає користувачеві краще розуміти та аналізувати дані. Реалізовано функції для імпорту та експорту даних, групування, аналізу та обчислення різних параметрів, створення каталогу координат. Ці функції допомагають ефективно працювати із геопросторовими даними. Практична цінність. Отримані результати можуть використовувати землевпорядні організації як державного, так і приватного сектору, а також організації з охорони культурної спадщини для уточнення меж об’єктів історико-культурної спадщини та їхніх охоронних зон за опрацьованими даними радіолокаційної інтерферометрії та георадарного знімання.