Browsing by Author "Smolanka, V. Yu."
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Навчання комбінованої моделі прогнозування часових рядів(Видавництво Львівської політехніки, 2021-10-10) Гече, Ф. Е.; Мулеса, О. Ю.; Батюк, А. Є.; Смоланка, В. Ю.; Geche, F. E.; Mulesa, O. Yu.; Batyuk, A. Ye.; Smolanka, V. Yu.; Ужгородський національний університет; Національний університет “Львівська політехніка”; Uzhhorod National University; Lviv Polytechnic National UniversityРозроблено метод побудови комбінованої моделі прогнозування часових рядів на підставі базових моделей прогнозування. Множина базових моделей є динамічною, тобто у цю множину можуть вноситися нові моделі прогнозування, можуть видалятися моделі залежно від властивостей часових рядів. Для синтезу комбінованої моделі прогнозування часових рядів із заданим кроком прогнозу спочатку визначається оптимальний крок передісторії. Будується функціонал і для фіксованого кроку прогнозу методом авторегресії визначається оптимальний крок передісторії, що визначає проміжок часу, упродовж якого аналізується точність моделей із базової множини. У процесі побудови комбінованої моделі для кожної базової моделі визначається ваговий коефіцієнт, з яким вона входить у комбіновану модель. Вагові коефіцієнти базових моделей визначаються на підставі точності їх прогнозування на часовому періоді, зумовленому кроком передісторії. Вагові коефіцієнти відображають міру впливу базових моделей на точність прогнозування комбінованої моделі. Після побудови комбінованої моделі проводиться її навчання та визначаються ті базові моделі, які будуть внесені в остаточну комбіновану модель прогнозування. Встановлено правило внесення базових моделей у комбіновану модель. Вносячи базові моделі у комбіновану модель прогнозування, враховують їх вагові коефіцієнти, які залежать від того самого параметра. Визначається оптимальне значення параметра через мінімізацію заданого функціонала, що встановлює середнє квадратичне відхилення між фактичними і прогнозними значеннями часового ряду. Вагові коефіцієнти з оптимальними параметрами ранжуються у послідовності незростання та використовуються на етапі внесення базових моделей у комбіновану модель. Завдяки такому підходу, як показують конкретні приклади, у багатьох випадках вдалося істотно підвищити точність прогнозування комбінованої моделі.