Організування поста технічного обслуговування кермового керування автомобілів категорії М1 у ФОП «Зафійовський Р. Ю.», м. Львів
Loading...
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Національний університет "Львівська політехніка"
Abstract
Кермове керування ? сукупність елементів для спрямування руху транспортного засобу в бажаному напрямку за допомогою кермового колеса. Його механізми перетворюють положення (кут повороту) керма на пропорційну зміну положення коліс чи аналогічних елементів керування рухом [1].
Адаптивне та активне кермове керування – це сучасні технології, які автоматично змінюють характеристики системи керування залежно від швидкості руху, дорожніх умов та дій водія. Адаптивне керування забезпечує легкість повороту керма на низьких швидкостях і підвищену стабільність на високих. Активне кермове керування, окрім зміни передавального відношення, здатне самостійно здійснювати коригуючі маневри для стабілізації руху в екстрених ситуаціях. Завдяки цим системам суттєво зростає маневреність, комфорт і загальна безпека експлуатації транспортного засобу.
Підсилювач кермового керування є невід’ємним елементом сучасного автомобіля, що значно полегшує процес повороту керма, особливо на малій швидкості або при паркуванні. Він зменшує фізичне навантаження на водія, забезпечує точнішу реакцію автомобіля та підвищує комфорт під час руху. Надійна робота підсилювача напряму впливає на безпеку: у разі його несправності керування стає складнішим і менш прогнозованим, що створює ризик втрати контролю над автомобілем.
Діагностування кермового керування є ключовим етапом у забезпеченні його ефективного функціонування, яке дозволяє вчасно виявити ознаки несправностей і запобігти дороговартісному ремонту. Завдяки застосуванню сучасного діагностичного обладнання процес перевірки стає точним, швидким та ефективним.
Об’єкт дослідження – процес технічного обслуговування кермового керування автомобілів категорії М1.
Предмет дослідження – алгоритм технічного обслуговування кермового керування автомобілів категорії М1.
Мета дослідження: розробити алгоритм технічного обслуговування кермового керування автомобілів категорії М1 та організувати відповідний пост.
Проаналізовано види кермових механізмів, принципи дії підсилювачів керма, типові несправності та особливості їх діагностики. Складено послідовність виконання операцій технічного обслуговування кермового керування автомобілів категорії М1, підібрано технологічне обладнання та проведено технологічний розрахунок поста.
Steering system is a set of components designed to direct the movement of a vehicle in the desired direction using the steering wheel. Its mechanisms convert the position (steering angle) of the wheel into a proportional change in the position of the wheels or other equivalent motion control elements [1]. Modern active and adaptive steering systems significantly contribute to enhancing driving safety, comfort, and vehicle maneuverability. These advanced technologies are controlled by electronic units that dynamically adjust key parameters depending on various factors such as road conditions, vehicle speed, driver behavior, and other operational circumstances. By processing real-time data, these systems adapt steering responses to changing environments, ensuring optimal performance. They also work in coordination with other vehicle electronics, including Electronic Stability Control (ESC), Traction Control Systems (TCS), Lane Departure Warning (LDW), and automated parking assist technologies. One of the most prominent examples is Active Front Steering (AFS), which allows the steering ratio ? the relationship between the steering wheel rotation and the angle of the front wheels ? to vary depending on the driving speed and conditions. At lower speeds, the system increases wheel responsiveness for better agility and easier maneuvering, which is especially useful during city driving or parking. At higher speeds, AFS reduces steering sensitivity to improve directional stability and reduce the chances of oversteering. This not only enhances control but also reduces driver fatigue on long journeys or highways. Meanwhile, adaptive steering systems tailor the steering response to match the driver’s behavior, vehicle load, and type of road surface. These systems provide a more personalized and intuitive driving experience. They constantly analyze input from multiple sensors to deliver smooth, precise control under diverse conditions. Such systems are particularly advantageous in urban environments, where frequent turning, stopping, and lane changes require a responsive yet stable steering system. Some modern vehicles also feature steer-by-wire technology, which eliminates the traditional mechanical link between the steering wheel and the wheels. Instead, electronic signals transmit commands to actuators, offering a high degree of customization and flexibility. This system not only allows for finer control but also reduces mechanical complexity and opens possibilities for integration with autonomous driving systems. The steering mechanism itself plays a fundamental role in directing the vehicle by transmitting force from the steering wheel to the front wheels, adjusting their angle according to the driver's input. There are three common types of steering mechanisms used in vehicles: rack-and-pinion, worm-and-sector, and screw-and-nut systems. The rack-and-pinion mechanism is the most widely used in modern passenger cars due to its simplicity, compactness, and high responsiveness. It consists of a pinion gear attached to the steering shaft and a toothed rack that converts rotational motion into linear movement, which then moves the tie rods connected to the wheels. This system offers minimal play, high accuracy, and a direct steering feel. It is lightweight, cost-effective to manufacture, and relatively easy to maintain. The worm-and-sector mechanism converts rotary motion from the steering wheel into linear motion using a worm gear that meshes with a toothed sector. Although heavier and more complex, this system delivers a high mechanical advantage, which reduces the driver’s effort while steering. Its smooth operation, long service life, and ability to filter out vibrations make it suitable for certain vehicle classes, especially older or heavier vehicles. The screw-and-nut mechanism, often referred to as the recirculating ball system, uses a threaded shaft and nut, sometimes incorporating ball bearings that circulate within the system to reduce friction. This setup offers excellent precision, minimal backlash, and smooth performance, making it ideal for large or heavy vehicles that require strong and accurate steering inputs.
Steering system is a set of components designed to direct the movement of a vehicle in the desired direction using the steering wheel. Its mechanisms convert the position (steering angle) of the wheel into a proportional change in the position of the wheels or other equivalent motion control elements [1]. Modern active and adaptive steering systems significantly contribute to enhancing driving safety, comfort, and vehicle maneuverability. These advanced technologies are controlled by electronic units that dynamically adjust key parameters depending on various factors such as road conditions, vehicle speed, driver behavior, and other operational circumstances. By processing real-time data, these systems adapt steering responses to changing environments, ensuring optimal performance. They also work in coordination with other vehicle electronics, including Electronic Stability Control (ESC), Traction Control Systems (TCS), Lane Departure Warning (LDW), and automated parking assist technologies. One of the most prominent examples is Active Front Steering (AFS), which allows the steering ratio ? the relationship between the steering wheel rotation and the angle of the front wheels ? to vary depending on the driving speed and conditions. At lower speeds, the system increases wheel responsiveness for better agility and easier maneuvering, which is especially useful during city driving or parking. At higher speeds, AFS reduces steering sensitivity to improve directional stability and reduce the chances of oversteering. This not only enhances control but also reduces driver fatigue on long journeys or highways. Meanwhile, adaptive steering systems tailor the steering response to match the driver’s behavior, vehicle load, and type of road surface. These systems provide a more personalized and intuitive driving experience. They constantly analyze input from multiple sensors to deliver smooth, precise control under diverse conditions. Such systems are particularly advantageous in urban environments, where frequent turning, stopping, and lane changes require a responsive yet stable steering system. Some modern vehicles also feature steer-by-wire technology, which eliminates the traditional mechanical link between the steering wheel and the wheels. Instead, electronic signals transmit commands to actuators, offering a high degree of customization and flexibility. This system not only allows for finer control but also reduces mechanical complexity and opens possibilities for integration with autonomous driving systems. The steering mechanism itself plays a fundamental role in directing the vehicle by transmitting force from the steering wheel to the front wheels, adjusting their angle according to the driver's input. There are three common types of steering mechanisms used in vehicles: rack-and-pinion, worm-and-sector, and screw-and-nut systems. The rack-and-pinion mechanism is the most widely used in modern passenger cars due to its simplicity, compactness, and high responsiveness. It consists of a pinion gear attached to the steering shaft and a toothed rack that converts rotational motion into linear movement, which then moves the tie rods connected to the wheels. This system offers minimal play, high accuracy, and a direct steering feel. It is lightweight, cost-effective to manufacture, and relatively easy to maintain. The worm-and-sector mechanism converts rotary motion from the steering wheel into linear motion using a worm gear that meshes with a toothed sector. Although heavier and more complex, this system delivers a high mechanical advantage, which reduces the driver’s effort while steering. Its smooth operation, long service life, and ability to filter out vibrations make it suitable for certain vehicle classes, especially older or heavier vehicles. The screw-and-nut mechanism, often referred to as the recirculating ball system, uses a threaded shaft and nut, sometimes incorporating ball bearings that circulate within the system to reduce friction. This setup offers excellent precision, minimal backlash, and smooth performance, making it ideal for large or heavy vehicles that require strong and accurate steering inputs.
Description
Citation
Бойчук А. М. Організування поста технічного обслуговування кермового керування автомобілів категорії М1 у ФОП «Зафійовський Р. Ю.», м. Львів : кваліфікаційна робота на здобуття освітнього ступеня магістр за спеціальністю „6.274.00.00 — Автомобільний транспорт“ / Андрій Миколайович Бойчук. — Львів, 2024. — 63 с.