Browsing by Author "Lozynskyy, O."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Analysis of Lyapunov matrices’application methods for optimization of stationary dynamic systems(Видавництво Львівської політехніки) Білецький, Р. О.; Лозинський, О. Ю.; Білецький, Ю. О.; Цяпа, В. Б.; Biletskyi, R.; Lozynskyy, O.; Biletskyi, Y.; Tsiapa, V.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityПроаналізовано застосування матриці Ляпунова з метою формування керуючих входів за різними методами оптимізації динамічних систем, орієнтованими за квадратичним інтегральним критерієм. Для цього розглянуто методи знаходження матриці Ляпунова та оптимізації на основі функціонального рівняння Беллмана із подальшим застосуванням рівняння Ріккаті, оптимізації з урахуванням початкових значень змінних стану, оптимізацію на основі рівняння Беллмана з використанням лінійних матричних нерівностей та рівняння Ляпунова. Незважаючи на складність розв’язування рівняння Ріккаті, задача знаходження матриці Ляпунова є однозначною лише у разі застосування методів оптимізації на основі динамічного програмування Беллмана та подання функції Беллмана функцією Ляпунова. Оптимізація на основі застосування умови лінійної матричної нерівності не є однозначною, оскільки потребує вибору розв’язку нерівності. Оптимізація системи за інтегральним квадратичним критерієм та початковими значеннями змінних стану також є неоднозначною, оскільки існує проблема розв’язування нелінійних взаємопов’язаних рівнянь оптимізації.Item Optimization of the Electromechanical System by Formation of a Feedback Matrix Based on State Variables(Видавництво Львівської політехніки, 2020-02-24) Лозинський, А. О.; Демків, Л. І.; Лозинський, О. Ю.; Білецький, Ю. О.; Lozynskyy, A.; Demkiv, L.; Lozynskyy, O.; Biletskyi, Y.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityЗадача забезпечення потрібних динамічних показників технічних систем є однією з основних задач теорії автоматичного керування. Синтез таких систем здійснюється на основі тих чи інших критеріїв, які характеризуються якість керування. На сьогоднішній день найбільш поширеним критерієм функціонування динамічної системи є інтегральний критерій від квадратичної форми, яка включає не тільки координати об’єкта, а і керуючі впливи. Тут слід зауважити, що внесення керуючої складової в інтегральний критерій якості дає змогу в разі його мінімізації отримати керуючі впливи обмеженої амплітуди, що особливо важливо підчас проектування реальних систем керування електромеханічними об’єктами. Таким чином один з сучасних підходів до створення оптимальних лінійних стаціонарних динамічних систем полягає в: − записі рівнянь, які описують такі системи в моделях змінних стану; − формуванні критеріїв оптимальності систем у вигляді інтегрального функціоналу від квадратичних форм цих змінних і керуючих впливів; − мінімізації цих функціоналів шляхом конструювання регуляторів як набору зворотних зв’язків за змінними стану і синтезі коефіцієнтів цих зв’язків; Поставлена задача належить до класу варіаційних задач і в загальному виді вона зводиться до розв’язку рівнянь Ріккаті, диференціального чи алгебраїчного: диференціального для нестаціонарних систем, коли матриця P, яка входить в це рівняння, залежить від часу і інтегральний критерій якості має границі інтегрування від t1 до t2, або алгебраїчного, коли маємо стаціонарну систему, зрозуміло, що матриця P не залежить від часу і границі інтегрування критерія якості є від нуля до нескінченності. Саме для багатьох електромеханічних систем вважається доцільним мінімізувати такий критерій на тривалих інтервалах часу. До таких систем можна зарахувати слідкуючі системи, системи стабілізації, тощо. Отже, виникає задача синтезу оптимальної електромеханічної системи шляхом знаходження керуючих впливів такої системи виходячи з принципів аналітичного конструювання регуляторів, як називається наведена задача в українській літературі, або як у західній літературі – “задачі про лінійний квадратичний регулятор”. Стаття містить: постановку проблеми, актуальність дослідження, мету роботи, аналіз останніх досліджень і публікацій, виклад основного матеріалу, висновки і список літератури.