Ukrainian Journal of Information Technology. – 2023. – Vol. 5, No. 1

Permanent URI for this collectionhttps://ena.lpnu.ua/handle/ntb/61559

Науковий журнал

Видання "Український журнал інформаційних технологій" засновано у 2018 р. за рішенням вченої ради Інституту комп'ютерних наук та інформаційних технологій від 23 квітня 2018 р. Журнал є правонаступником збірника наукових праць "Вісник Національного університету "Львівська політехніка". Серія: Комп'ютерні науки та інформаційні технології", який входить до переліку фахових видань ВАК України, в яких можна друкувати матеріали дисертаційних робіт у галузі технічних наук.

Український журнал інформаційних технологій. – Львів : Видавництво Львівської політехніки, 2023. – Том 5, № 1. – 102 с. : il.

Український журнал інформаційних технологій

Зміст (том 5, № 1)


1
9
17
25
42
51
61
67
77
86
92
99

Content (Vol. 5, No 1)


1
9
17
25
42
51
61
67
77
86
92
99

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Базова структура системи нейронечіткого управління групою мобільних робототехнічних платформ
    (Видавництво Львівської політехніки, 2023-02-28) Цмоць, І. Г.; Опотяк, Ю. В.; Штогрінець, Б. В.; Дзюба, А. О.; Олійник, Ю. Ю.; Tsmots, I. G.; Opotyak, Yu. V.; Shtohrinets, B. V.; Dzyuba, A. O.; Oliynyk, Yu. Yu.; Національний університет “Львівська політехніка”; Національна академія сухопутних військ ім. гетьмана Петра Сагайдачного; Lviv Polytechnic National University; Hetman Petro Sahaidachnyi National Army Academy
    Показано, що для групового управління мобільними робототехнічними платформами (МРП) можуть використовуватися такі підходи: централізований (зосереджений), децентралізований (розподілений) та гібридний. Визначено, що актуальним завданням є розроблення системи нейронечіткого управління групою МРП, яка повинна виконувати: розподіл завдань між МРП, визначення маршрутів руху МРП, спільне планування робіт та їх синхронізацію. Сформульовано вимоги до системи нейронечіткого управління групою МРП, основними з яких є: ефективне управління групою МРП; мінімізація часу на виконання завдань; гнучкість та адаптивність до змінних умов роботи; надійна та стійка робота при реалізації різних сценаріїв; розширення функцій та масштабування відносно кількості МРП; точність та надійність управління рухом кожної МРП; реагування на зміни умов роботи; безперебійна робота групи МРП; ефективне використання ресурсів МРП; зменшення габаритів, ваги та енергоспоживання; управління у реальному часі; збирання даних про навколишнє середовище та стан МРП; бездротовий зв’язок між МРП; розроблення програмних засобів, з урахуванням розподіленої архітектури; реалізація інтерфейсу програмування з можливістю розроблення додаткового програмного забезпечення та інтеграції з іншими системами; збереження даних про стан всіх МРП для подальшого аналізу та вдосконалення управління групою МРП. Визначено такі основні етапи розроблення системи нейронечіткого управління групою МРП: формулювання задачі; аналіз вимог до системи; проектування апаратних засобів; розроблення алгоритму нейронечіткого управління; розроблення ПЗ; тестування та налаштування; впровадження та експлуатація. Запропоновано розроблення системи нейронечіткого управління групою МРП виконувати на базі інтегрованого підходу, який охоплює: методи нейронечіткого управління групою МРП, штучні нейронні мережі та нечітку логіку; методи навігації, методи попереднього опрацювання та розпізнавання зображень; методи інтелектуального опрацювання та оцінювання даних із давачів в умовах дії завад і неповноти інформації; сучасні методи та алгоритми інтелектуального управління рухом МРП; сучасну елементну базу (мікроконтролери, системи на кристалі, ПЛІС тощо); методи та засоби автоматизованого проектування апаратних і програмних засобів МРП. Запропоновано реалізацію системи нейронечіткого управління групою МРП виконувати на підставі проблемно-орієнтованого підходу, який передбачає поєднання програмного (універсального) і апаратного (спеціалізованого) забезпечення, який забезпечує високу ефективність використання обладнання. Вдосконалено метод часового розподілу ресурсів запам’ятовуючого середовища багатопортової пам’яті, який за рахунок врахування швидкодії запам’ятовуючого середовища та зовнішніх пристроїв забезпечує збільшення кількості пристроїв із безконфліктним доступом до запам’ятовуючого середовища.
  • Thumbnail Image
    Item
    Апаратне та програмне забезпечення системи моніторингу спектру віброприскорень
    (Видавництво Львівської політехніки, 2023-02-28) Теслюк, В. М.; Ріпак, Н. С.; Головатий, А. І.; Опотяк, Ю. В.; Теслюк, Т. В.; Teslyuk, V. M.; Ripak, N. S.; Holovatyy, A. I.; Opotyak, Yu. V.; Teslyuk, T. V.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Вібрація серед усіх видів механічних впливів для технічних об’єктів найбільш небезпечна. Знакозмінні напруження, викликані вібрацією, сприяють накопиченню пошкоджень у матеріалах, конструкції системи та руйнуванню. Досить швидко руйнування об’єкта настає при вібраційних впливах за умов резонансу. Водночас, вібрація викликає порушення фізіологічного та функціонального станів людини. Вплив вібрації на людину залежить від її спектрального складу, напрямку дії, тривалості впливу, а також від індивідуальних особливостей особи. У випадку впливу на людину зовнішніх коливань (хитавиці, струсів, вібрації) відбувається їхня взаємодія з внутрішніми хвильовими процесами, виникнення резонансних явищ. Так, зовнішні коливання, із частотою менш 0,7 Гц, утворюють хитавицю і порушують у людини нормальну діяльність вестибулярного апарату. Інфразвукові коливання (менш 16 Гц), впливаючи на людину, пригнічують центральну нервову систему, викликаючи почуття тривоги та страху. За певної інтенсивності на частоті 6…7 Гц інфразвукові коливання, втягуючи у резонанс внутрішні органи і систему кровообігу, здатні викликати травми, розриви артерій тощо. Розроблено структуру системи моніторингу спектру віброприскорень, яка ґрунтується на модульному принципі та включає мікроконтролер, акселерометр, рідкокристалічний графічний кольоровий дисплей, флеш пам’ять, монітор мікрокомп’ютера. Розроблено алгоритми системи моніторингу спектру віброприскорень, що включає алгоритм калібрування акселерометра, алгоритм вимірювання динамічних прискорень та алгоритм швидкого перетворення Фур’є. Визначено інтерфейс I2C для обміну даними між акселерометром ADXL345 та мікрокомп’ютером Raspberry Pi 3 Model B. Розроблено програмне забезпечення, що опрацьовує вхідну інформацію від декількох підключених до Raspberry Pi акселерометрів, що дає змогу проводити багатоканальні вимірювання і їхній аналіз. Наведено результати тестування побудованої системи, які дають змогу стверджувати про правильність та коректність функціонування розробленої системи.