Радіоелектроніка та телекомунікації. – 2014. – №796

Permanent URI for this collectionhttps://ena.lpnu.ua/handle/ntb/25691

Вісник Національного університету "Львівська політехніка"

У віснику відображено результати досліджень з теорії та проектування радіо-електронних кіл і пристроїв, антен і пристроїв НВЧ-діапазону, систем телекомунікації та інформаційних мереж, а також математичного моделювання та конструювання радіо-електронних схем і радіоапаратури. Для наукових працівників, інженерів та студентів старших курсів, фахівців з радіотехніки, інформаційних технологій та телекомунікаційних систем, матеріалознавства, інформатики, вимірювання і контролю якості.

Вісник Національного університету «Львівська політехніка» : [збірник наукових праць] / Міністерство освіти і науки України, Національний університет «Львівська політехніка» – Львів : Видавництво Львівської політехніки, 2014. – № 796 : Радіоелектроніка та телекомунікації / відповідальний редактор Б. А. Мандзій. – 255 с. : іл.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Забезпечення стійкості перетворювачів напруга-струм з комплексним навантаженням
    (Видавництво Львівської політехніки, 2014) Ю.В. Баланюк
    Запропоновано методику визначення стійкості перетворювача напруга-струм, виконаного за схемою підсилювача постійного струму з глибоким зворотним зв’язком за струмом і навантаженим на індуктивність. Наведено аналітичні вирази для визначення запасу стійкості за фазою та амплітудою. Графічно показано вплив опору резистора шунтування індуктивного навантаження на стійкість роботи перетворювача. In this paper, the method of determining the stability of the voltage-to-current converter (VCC) with complex load, which is built on the DC amplifier with a deep negative feedback (NFB) by current. The feedback signal is formed on precise resistor, which is connected in series with an inductive load. The deep feedback and complex load can cause a violation of the stability of the VCC across the whole dynamic range of operation. Additional complexity to ensure stability of the VCC is provided by complex nature of the load. Outside the range of middle frequencies (over 30 kHz) the transfer coefficient is determined by the inductance of load and by the resistor, which forms feedback signal. The feedback factor stops to be a real value and becomes a complex. The phase of NFB signal voltage begins to change and the NFB effect on providing the specified accuracy and on the speed of the current setting in the inductive load is reduced. Upon reaching the large phase shifts in circuit of the VCC amplifier and inductive load at certain frequencies NFB becomes positive, leading to a significant distortion of the output signal and the deterioration of the basic parameters of the VCC, in the worst case, to the self-excitation. It is shown that the stability of VCC is affected by the gain of the amplifier without accounting the NFB influence, depth of feedback and the inductive load time constant tН. Since the gain of the amplifier without accounting the NFB influence and transfer coefficient of the circuit, – inductive load - NFB signal formation resistor, depends on the frequency, the VCC with a load is analyzed as at least the second-order operating system. This system has a tendency to self-excitation and can only be conditionally stable. The analysis of methods for determining the stability of VCC with deep feedback was carried out. The determination of stability criterions of Mikhailov, Routh–Hurwitz and Nyquist was considered on the real Bode diagrams. It was determined that in order to find the stability margin, the most advisable in practice to apply the Nyquist stability criterion in its graph-analytical implementation. The stability of the VCC, which is built using operational amplifiers which are presented by one equivalent RC-circuit, was analyzed. The design method for constructing the total amplitude-frequency characteristic, accounting the parameters of the VCC and inductive load, is given. Two examples of VCC implementation: with low inductance load and with large inductance load, are considered. The analytical expressions for determination of the equivalent frequency poles of the system are presented. There is showed how to choose the shunting resistor to ensure the stability. The dependencies of the amplitude-frequency and phasefrequency characteristics on the shunt resistor of inductive load are illustrated, showing its effect on the stability of the VCC operation, as well as the margin of stability of the phase.
  • Thumbnail Image
    Item
    Фотоелектронне формування сигналу в сканувальному телевізійному оптичному мікроскопі
    (Видавництво Львівської політехніки, 2014) Гой, В. М.; Гудзь, Б. В.; Шклярський, В. І.
    Описано особливості застосування фотоелектронних перетворювачів оптичного випромінювання на електричний сигнал та вимоги до їх параметрів у разі використання в сканувальному телевізійному оптичному мікроскопі. Запропоновано класифікацію фотоелектронних перетворювачів. Розглянуто характерні особливості різних видів фотоелектронних перетворювачів та можливості їхнього застосування в сканувальній оптичній мікроскопії. This paper presents a method of determining the necessary sensitivity for photoelectronic transducer (PET) in scanning television optical microscope (STOM), which is used for biological microobject studying. High resolution cathode ray tube is used in the STOM for test microobject illumination. On the screen of this tube a scanning raster is being formed. This raster allows you to create an image of microobjects, whose resolution exceeds 4000x4000 elements. The proposed principle of microobject scanning using light probe with subsequent computer image processing has several advantages compared to optical microscopy – possibility of quantitative measurements within individual fragments of tested microobjects; flexibility to control the measurement process; reducing the duration of the study; higher resolution. These advantages allow to use the new method for studying microobjects extensively, including the ultraviolet radiation range. To generate an electric signal which amplitude is proportional to the luminous flux coming from the test microscopic element, PET is being used. The method for determining sensitivity of the PET is proposed in this article. This technique takes into account the design parameters of optical channel: transmission ratio of condenser lens in the optical channel; the solid angle within which the luminous flux from the object reaches the condenser lens, the entrance pupil area of condenser lens. While determining the required PET sensitivity load impedance of transducer, required signal/noise ratio for obtaining desired quality of the formed image and video bandwidth for the selected definition of microscopic images are considered. The classification of PET, suitable for use in the STOM, which will optimize the choice of the PET for the optical channel, depending on the capabilities of the microscope and its alleged main technical parameters is developed. The main classification PET features are: physical operation principle, spectral operation range, number of photosensitive elements, number of optical data input channels, frequency properties, and type of output signal.