Electrical Power and Electromechanical Systems. – 2020. – Vol. 2, No. 1

Permanent URI for this collectionhttps://ena.lpnu.ua/handle/ntb/49623

Науковий журнал

Журнал є правонаступником збірника наукових праць «Вісник Національного університету «Львівська політехніка». Серія: «Електроенергетичні та електромеханічні системи». Журнал призначений для науковців і інженерів, що спеціалізуються в галузі електроенергетики та електромашинобудування

Electrical Power and Electromechanical Systems = Електроенергетичні та електромеханічні системи : науковий журнал / Lviv Politechnic National University. – Lviv : Lviv Politechnic Publishing House, 2020. – Volume 2, number 1. – 94 p.

Електроенергетичні та електромеханічні системи

Зміст (том 2, № 1)


1
8
18
27
36
43
52
66
79
88

Content (Vol. 2, No 1)


1
8
18
27
36
43
52
66
79
88

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Комп’ютерне моделювання системних стабілізаторів потужності електроенергетичних систем
    (Видавництво Львівської політехніки, 2020-01-20) Мороз, В. І.; Коновал, В. С.; Moroz, V.; Konoval, V.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Розглянуто структурні моделі системних стабілізаторів електроенергетичних мереж, які використовуються для поліпшення демпфування коливань потужності енергосистеми за допомогою регулювання збудження синхронних турбогенераторів електростанцій. Математичні та структурні моделі такого системного стабілізатора для різних порядків його передатної функції згідно з рекомендаціями IEEE запропоновано для реалізації у системах автоматичного проектування, зокрема, для системи комп'ютерного аналізу стійкості електроенергетичних мереж DAKAR. Проаналізовано існуючі системні стабілізатори, що рекомендовані асоціацією IEEE для електроенергетичних систем, кожен з яких має застосування, пов'язане з наявною системою збудження турбогенератора. Наведено опис будови існуючих системних стабілізаторів. Для побудови їх моделі на підставі рекомендацій IEEE запропоновано використання перетворення структурної схеми системного стабілізатора до канонічної форми спостережності. Таке перетворення надає можливості для створення математичних моделей таких систем для кола збудження синхронного генератора у формі як структурної моделі, так і системи диференціальних рівнянь, що відповідає такій структурі. Для аналізу частотних і часових характеристик моделей системних стабілізаторів використано середовище MATLAB з бібліотекою Control System Toolbox, що дало змогу проаналізувати частотні та часові характеристики рекомендованих IEEE системних стабілізаторів та їхніх моделей, які одержано на підставі канонічної форми спостережності. За рекомендаціями IEEE знаменник передатної функції системного стабілізатора може мати від першого до п'ятого порядку, що, відповідно, розширює коло використовуваних математичних моделей. Для їх аналізу на основі розгорнутої передатної функції системного стабілізатора створено узагальнені математичну і структурну моделі, які стали основою для розроблення відповідних моделей першого–п'ятого порядків. Для кожної такої моделі відповідного порядку в статті показано як структурну схему, так і математичну модель як систему диференціальних рівнянь у формі Коші. Результати комп'ютерного моделювання підтвердили адекватність розроблених моделей і простоту їхнього використання.
  • Thumbnail Image
    Item
    Influence analysis of unstable zeroes and poles on the stability of the feedback systems
    (Видавництво Львівської політехніки, 2020-01-20) Марущак, Я. Ю.; Мороз, В. І.; Цяпа, В. Б.; Головач, І. Р.; Чупило, І.; Marushchak, Y.; Moroz, V.; Tsyapa, V.; Holovac, I.; Chupylo, I.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    З огляду на теорію автоматичного керування, не повинно бути різниці в поведінці між об'єктом, який задано набором передатних функцій, що відповідно поєднані між собою, так і реальним об'єктом, що відповідає такій теоретичній структурі зі заданими передавальними функціями. Відповідно до цього, проведено узагальнений аналіз гіпотези Отто Сміта стосовно показників стійкості в системах автоматичного керування з нестійкими нулями та полюсами передавальних функцій другого порядку. У зв'язку з тим, що поведінка більшості технічних об'єктів може бути описана передавальною функцією другого порядку, основний акцент зроблено саме на передатній функції зі знаменником (характеристичним рівнянням) другого порядку з нестійкими нулями і полюсами. У статті для опису використано як апарат передавальних функцій, так і структурні моделі відповідного рівня, що дало змогу зробити їхній опис наочним. Виконано узагальнений опис системи автоматичного керування другого порядку з від'ємним жорстким зворотним зв'язком. Для такої системи сформовано теоретичні критерії стійкості стосовно її параметрів на підставі необхідних і достатніх умов стійкості. На підставі узагальненого опису передавальною функцією другого порядку виконано дослідження систем автоматичного керування з різними варіантами розміщення на комплексній площині нестійких нулів і полюсів передавальної функції розімкнутої системи. Виклад матеріалу супроводжується численними прикладами, для яких розглянуто випадки передавальних функцій як з дійсними полюсами, так і з парою комплексно-спряжених полюсів. Для кожного наведеного в статті прикладу розглянуто випадок як розімкнутої системи, так і замкнутої системи з одиничним зворотним зв'язком. Обидва випадки для кожного прикладу проілюстровано графіками логарифмічних амплітудно-частотних і фазо-частотних характеристик і перехідною функцією. Проведені дослідження в статті проілюстровано графіками логарифмічних амплітудночастотних і фазо-частотних характеристик і перехідних функцій, які для кожного прикладу отримані з використанням математичних застосунків MATLAB (разом з бібліотекою Control System Toolbox) і Mathcad. За результатами проведених досліджень підтверджено висновки О. Сміта про відмінність у поведінці реальних фізичних систем з нестійкими нулями і полюсами та теоретично отриманими моделями з аналогічними передавальними функціями.