Infocommunication Technologies and Electronic Engineering
Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/57471
Browse
Search Results
Item Модель інтелектуального аналізу даних в IIoT(Видавництво Львівської політехніки, 2021-01-31) Климаш, М.; Гордійчук-Бублівська, О.; Коваль, Б.; Klymash, M.; Hordiichuk-Bublivska, O.; Koval, B.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityВ роботі подано огляд методів інтелектуальної обробки даних у системах промислового Інтернету речей. Наведено порівняння методів аналізу великих даних у промислових системах зі значним навантаженням. Запропоновано використовувати для опрацювання даних методи розподіленого машинного навчання. Розроблено програмну модель для аналізу даних різних обсягів. Проаналізовано основні підходи до організації машинного навчання: федеративне і нерозподілене навчання. Експериментально доведено ефективність використання федеративного машинного навчання, оскільки воно забезпечує вищу точність оброблення даних, навіть у разі збільшення їх обсягів. Визначено, що нерозподілене машинне навчання працює швидше, отже, може використовуватися в системах, пріоритетом для яких є менший час обробки даних. Такий підхід відкриває можливості створення адаптивної моделі системи промислового Інтернету речей, що здатна самонавчатися та коригувати власну інфраструктуру залежно від зміни параметрів.Item Дослідження алгоритмів паралельного опрацювання інформації в базах даних(Видавництво Львівської політехніки, 2021-04-01) Климаш, М.; Гордійчук-Бублівська, О.; Чайковський, І.; Данильченко, Т.; Klymash, M.; Hordiichuk-Bublivska, O.; Tchaikovskyi, I.; Danylchenko, T.; Національний університет “Львівська політехніка”; Lviv Polytechnik National UniversityУ роботі досліджено питання зменшення часу оброблення інформації в базах даних. Для швидкого пошуку та аналізу запитів запропоновано використовувати розподілені бази даних, в яких інфомація розподіляється і зберігається на декількох пристроях. Для взаємозв’язку всіх даних та швидкого пошуку застосовується метод колонкових індексів, у якому враховано подібність даних та передбачено можливість знаходження інформації за ключем, навіть якщо вона міститься розподілено на різних пристроях. Такий підхід спрощує проблеми пошуку великих обсягів інформаціії в базах даних і дає можливість ефективніше опрацьовувати користувацькі запити.