Infocommunication Technologies and Electronic Engineering

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/57471

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Модель інтелектуального аналізу даних в IIoT
    (Видавництво Львівської політехніки, 2021-01-31) Климаш, М.; Гордійчук-Бублівська, О.; Коваль, Б.; Klymash, M.; Hordiichuk-Bublivska, O.; Koval, B.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    В роботі подано огляд методів інтелектуальної обробки даних у системах промислового Інтернету речей. Наведено порівняння методів аналізу великих даних у промислових системах зі значним навантаженням. Запропоновано використовувати для опрацювання даних методи розподіленого машинного навчання. Розроблено програмну модель для аналізу даних різних обсягів. Проаналізовано основні підходи до організації машинного навчання: федеративне і нерозподілене навчання. Експериментально доведено ефективність використання федеративного машинного навчання, оскільки воно забезпечує вищу точність оброблення даних, навіть у разі збільшення їх обсягів. Визначено, що нерозподілене машинне навчання працює швидше, отже, може використовуватися в системах, пріоритетом для яких є менший час обробки даних. Такий підхід відкриває можливості створення адаптивної моделі системи промислового Інтернету речей, що здатна самонавчатися та коригувати власну інфраструктуру залежно від зміни параметрів.
  • Thumbnail Image
    Item
    Дослідження алгоритмів паралельного опрацювання інформації в базах даних
    (Видавництво Львівської політехніки, 2021-04-01) Климаш, М.; Гордійчук-Бублівська, О.; Чайковський, І.; Данильченко, Т.; Klymash, M.; Hordiichuk-Bublivska, O.; Tchaikovskyi, I.; Danylchenko, T.; Національний університет “Львівська політехніка”; Lviv Polytechnik National University
    У роботі досліджено питання зменшення часу оброблення інформації в базах даних. Для швидкого пошуку та аналізу запитів запропоновано використовувати розподілені бази даних, в яких інфомація розподіляється і зберігається на декількох пристроях. Для взаємозв’язку всіх даних та швидкого пошуку застосовується метод колонкових індексів, у якому враховано подібність даних та передбачено можливість знаходження інформації за ключем, навіть якщо вона міститься розподілено на різних пристроях. Такий підхід спрощує проблеми пошуку великих обсягів інформаціії в базах даних і дає можливість ефективніше опрацьовувати користувацькі запити.