Electrical Power and Electromechanical Systems

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/46160

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Application of the zeros and poles matched method for modeling of electrical systems
    (Видавництво Львівської політехніки, 2022-02-22) Мороз, В. І.; Вакарчук, А. Б.; Moroz, V.; Vakarchuk, A.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Поширення математичних застосунків, які надають засоби розв’язування диференціальних рівнянь, і збільшення швидкодії обчислювальних пристроїв призвели до зменшення зацікавленості операторними методами, зокрема z-перетворенням. Проте використання можливостей z-перетворення дає змогу реалізувати ефективні швидкодіючі обчислювальні схеми із високою числовою стійкістю. Потреба в цьому може виникнути у випадку моделювання в реальному часі чи під час синтезу цифрових систем керування. На підставі аналізу літературних джерел показано актуальність і переваги використання z-перетворення для моделювання динаміки електротехнічних систем. Розглянуто спосіб комп’ютерного моделювання, основою якого є використання для побудови комп’ютерної моделі методу відображення (відповідності) нулів і полюсів еквівалентної неперервної передавальної функції. Показано реалізацію отриманих цим методом моделювальних рекурентних формул для трьох елементарних динамічних ланок, які одержують внаслідок розкладу передавальної функції за теоремою розкладу Гевісайда: інтегральної (нульовий полюс), інерційної першого порядку (дійсний полюс) і ланки другого порядку із дійсним нулем і парою комплексно спряжених полюсів. Отже, реалізована паралельна декомпозиція досліджуваної системи, що дає змогу зменшити негативний вплив обмеженої розрядності системи і полегшити виконання паралельних обчислень. Для кожної такої ланки одержано дискретну передавальну функцію та моделювальне рекурентне рівняння. На двох прикладах продемонстровано практичне використання та переваги цього способу: проста пружна механічна система, яка описана диференціальним рівнянням другого порядку, та нелінійна модель асинхронної машини за однофазною Т-подібною заступною схемою. Обидві задачі проілюстровані прикладами розв’язування у середовищі математичного застосунку Mathcad. Підтверджено ефективність методу відповідності нулів і полюсів порівняно з класичними числовими методами розв’язування звичайних диференціальних рівнянь. Використання цього способу математичного моделювання дає змогу забезпечити стійкий числовий розв’язок із заданою точністю для широкого діапазону кроків розв’язування.
  • Thumbnail Image
    Item
    Комп’ютерне моделювання системних стабілізаторів потужності електроенергетичних систем
    (Видавництво Львівської політехніки, 2020-01-20) Мороз, В. І.; Коновал, В. С.; Moroz, V.; Konoval, V.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Розглянуто структурні моделі системних стабілізаторів електроенергетичних мереж, які використовуються для поліпшення демпфування коливань потужності енергосистеми за допомогою регулювання збудження синхронних турбогенераторів електростанцій. Математичні та структурні моделі такого системного стабілізатора для різних порядків його передатної функції згідно з рекомендаціями IEEE запропоновано для реалізації у системах автоматичного проектування, зокрема, для системи комп'ютерного аналізу стійкості електроенергетичних мереж DAKAR. Проаналізовано існуючі системні стабілізатори, що рекомендовані асоціацією IEEE для електроенергетичних систем, кожен з яких має застосування, пов'язане з наявною системою збудження турбогенератора. Наведено опис будови існуючих системних стабілізаторів. Для побудови їх моделі на підставі рекомендацій IEEE запропоновано використання перетворення структурної схеми системного стабілізатора до канонічної форми спостережності. Таке перетворення надає можливості для створення математичних моделей таких систем для кола збудження синхронного генератора у формі як структурної моделі, так і системи диференціальних рівнянь, що відповідає такій структурі. Для аналізу частотних і часових характеристик моделей системних стабілізаторів використано середовище MATLAB з бібліотекою Control System Toolbox, що дало змогу проаналізувати частотні та часові характеристики рекомендованих IEEE системних стабілізаторів та їхніх моделей, які одержано на підставі канонічної форми спостережності. За рекомендаціями IEEE знаменник передатної функції системного стабілізатора може мати від першого до п'ятого порядку, що, відповідно, розширює коло використовуваних математичних моделей. Для їх аналізу на основі розгорнутої передатної функції системного стабілізатора створено узагальнені математичну і структурну моделі, які стали основою для розроблення відповідних моделей першого–п'ятого порядків. Для кожної такої моделі відповідного порядку в статті показано як структурну схему, так і математичну модель як систему диференціальних рівнянь у формі Коші. Результати комп'ютерного моделювання підтвердили адекватність розроблених моделей і простоту їхнього використання.