Геодезія, картографія і аерофотознімання
Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/2147
Міжвідомчий науково-технічний збірник.
ISSN 0130-1039
News
Геодезія, картографія і аерофотознімання.
Міжвідомчий науково-технічний збірник.
ISSN 0130-1039.
Видається з 1964 року.
Browse
8 results
Search Results
Item Analysis of the residual distortion and forward motion influence on the accuracy of spatial coordinates determination based on UAV survey(Видавництво Львівської політехніки, 2023-02-28) Глотов, Володимир; Бяла, Мирослава; Шило, Євгеній; Hlotov, Volodymyr; Biala, Myroslava; Shylo, Yevhenii; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityМетою роботи є дослідження цифрової неметричної камери Canon EOS 5D Mark III, що встановлюється на октокоптері DJI S1000 на предмет точності визначення просторових координат за знімками; виявлення та аналіз джерел похибок, що впливають на точність стереофотограмметричного знімання камерою Canon EOS 5D Mark III. Виконано стереофотограмметричне знімання та аерознімання з октокоптера DJI S1000 полігону маркованих точок, що слугували джерелом отримання даних для побудови стереомоделей з їх подальшим опрацюванням в програмному пакеті “Delta 2”. Сформовано каталоги просторових координат маркованих точок досліджуваних полігонів із вимірювань електронним тахеометром Trimble M3 DR і зі стереомоделей, обчислено різниці та СКП визначення просторових координат точок на знімках. Зважаючи на специфіку розміщення маркованих точок на досліджуваних полігонах, також обчислено вплив рельєфу місцевості та лінійного зсуву зображення на точність даних аерознімання. Отримані результати дослідження підтверджують наявність залишкової дисторсії оптичної системи цифрової камери Canon EOS 5D Mark III, що зумовлює необхідність проведення калібрування камери для підвищення точності отриманих знімків задля подальшого використання з метою картографування, моніторингу геоморфологічних процесів та явищ, створення ЦМР тощо. Також виявлено вплив лінійних зсувів та похибок, спричинених перепадом висот місцевості знімання, на точність побудови стереомоделей. Запропоновано конфігурацію та створено полігон маркованих контрольних точок на місцевості для проведення калібрування цифрової неметричної камери в умовах максимально наближених до умов знімання, що, з огляду на проаналізовані літературні джерела, є ефективнішим за калібрування в лабораторії.Item Monitoring of geodynamic processes in the Tysa river basin using AUTEL EVO II PRO RTK UAV(Видавництво Львівської політехніки,, 2022-02-22) Калинич, Іван; Ничвид, Марія; Проданець, Іван; Каблак, Наталія; Ваш, Ярослав; Kalynych, Ivan; Nychvyd, Mariya; Prodanets, Ivan; Kablak, Nataliya; Vash, Yaroslav; Національний університет “Львівська політехніка”; Ужгородський національний університет; Lviv Polytechnic National University; Uzhhorod National UniversityЦя стаття присвячена дослідженню геодинамічних процесів в басейні річки Тиса в межах Закарпатської області з аналізом геодезичних спостережень, отриманих за останнє десятиліття. Методика. Карсто моніторинг було розпочато із виявлення найнебезпечніших ділянок земної поверхні, які піддаються вертикальним зміщенням. Після виявлення найбільш небезпечних ділянок для попередження можливих аварій був проведений локальний геодезичний моніторинг на об’єктах в межах смт. Солотвино, с. Ділове та с. Біла Церква. Для відпрацювання методики виявлення змін ландшафтів та форм рельєфу під впливом геодинамічних процесів використано також колекцію архівного аерофотознімання. Результати. Для знімання карстів використовувались БПЛА. На основі даних цифрового аерознімання створено: ортофотоплани і цифрові моделі рельєфу для прогнозування карстів та зміщень. Цифрове аерознімання виконувалось відповідно до вимог нормативних документів. Перевагою аерознімання є можливість отримати додаткову інформацію про положення річкових русел, зміни в рослинному покриві, активізацію ерозійних процесів. Для визначення динаміки зсувів, карсту цифрове аерознімання необхідно повторити кілька разів через певні інтервали. Аерознімальні роботи виконано у два етапи у 2020 та 2021 р. Для розпізнавальних знаків вибирались контурні точки, які розпізнаються на цифровому аерознімку і місцевості з точністю не менше 0,1 мм у масштабі створюваного плану. Математичну обробку геодезичних GPS-вимірювань виконано за допомогою програмного забезпечення Trimble Geomatics Office з приведенням ліній на рівень моря і редукуванням на площину проекції Гаусса-Крюгера. Після фотограмметричної обробки виконано контроль якості отриманих результатів та створено цифрові моделі рельєфу прийомами DEM та TIN. Ортофотоплани в масштабі 1:1000 виготовлені за растровими зображеннями аерознімків з урахуванням створеної цифрової моделі рельєфу. Для оновлення інформації про стан сучасних карстоутворень та ділянок з екзогенними процесами в Солотвино та Біла Церква Тячівського району та с. Ділове Рахівського району Закарпатської області виникла необхідність у проведенні моніторингових робіт. Розроблено та апробовано технологію топографо-геодезичних робіт із застосуванням БПЛА і GPS-вимірювань в гірських районах. Результати аерознімання використані з метою візуалізації об’єктів дослідження та донесенні інформації про деформаційні процеси до органів місцевого самоврядування. Для процесів природного чи техногенного характеру (зміщення, зсуви, карсти) потрібна розробка індивідуальних підходів при використанні БПЛА. Подібні моніторингові дослідження виводять на новий рівень вивчення природного середовища і з кожним роком підвищуватимуть наукову цінність отриманих матеріалів. При масовому використанні знімань з БПЛА формується банк даних, який неможливо отримати іншими методами. Створено методику комплексного визначення рухів на екзогенних та техногенних ділянках місцевості в гірських районах з використанням новітніх технологій, що дає можливість оперативного створення планово-висотної основи необхідної точності у референцній системі координат при розв’язанні низки задач прикладної геодезії з використанням супутникових технологій і БПЛА для спостереженнями за об’єктами.Item Development of a methodics for improving the accuracy of determination of spatial coordinates of object points during air surveillance from a UAV(Видавництво Національного університету “Львівська політехніка”, 2020-03-12) Глотов, В.; Фис, М.; Пащетник, О.; Hlotov, V.; Fys, M.; Pashchetnyk, O.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityМета. Розробити оптимальний алгоритм, завдяки якому вдасться підвищити точність визначення координат місцевості при застосуванні аерознімального процесу з допомогою безпілотного літального апарату (БПЛА). Методика. Виконується мінімізація функції побудованої на підставі умови колінеарності, що дає уточнення елементів зовнішнього орієнтування (ЕЗО) цифрових зображень, а це у свою чергу приводить до підвищення точності просторових координат точок об’єктів. Причому, запропонована функція – це сума квадратів різниць між вирахуваними та даними спостережень опорних точок на відповідних цифрових зображеннях. Послідовність реалізації запропонованого алгоритму полягає в тому, що урахування умови мінімуму цієї функції дає можливість отримати систему шести нелінійних рівнянь стосовно ЕЗО. Процес визначення ЕЗО виконується двома способами: в першому випадку функцію G мінімізуємо безпосередньо одним з чисельних методів, а в другому – одержуємо як розв’язок системи рівнянь, що дає уточнені значення ЕЗО на підставі початкових наближень, отриманих безпосередньо з телеметрії БПЛА. Для контролю точності визначення ЕЗО застосовуються видозмінені умови мінімуму функції G в яких відсутні операції диференціювання. В результаті, отримаємо остаточні значення ЕЗО в момент знімання. Результати. Розроблений і апробований на макетних на реальних прикладах алгоритм, який дозволяє підвищити точність обчислення координат точок місцевості при застосуванні БПЛА для аерознімального процесу. Наукова новизна. Отримані формули, за допомогою яких підвищується точність створення топографічних матеріалів цифровим стереофотограмметричним методом. Практична значущість. Впровадження розробленого алгоритму дасть змогу суттєво підвищити точність опрацювання великомасштабних ортофотопланів та топографічних планів створених за матеріалами аерознімання з БПЛА.Item Development and investigation of UAV for aerial surveying(Видавництво Львівської політехніки, 2018-02-26) Глотов, В.; Гуніна, А.; Колесніченко, В.; Прохорчук, О.; Юрків, М.; Hlotov, V.; Hunina, A.; Kolesnichenko, V.; Prokhorchuk, O.; Yurkiv, M.; Національний університет “Львівська політехніка”; Фірма “Abris Design Group”; National University Lviv Polytechnic; Firm Abris Design GroupМета. Розробити БПЛА для топографічних аерознімальних цілей та дослідити його особливості і відповідність виконання поставлених завдань. Методика. Науковці Інституту геодезії Національного університету “Львівська політехніка” та виробничники фірми Abris Design Group послідовно розробляли та досліджували декілька моделей БПЛА з метою створення досконалого зразка, за допомогою якого можливо проводити аерознімання для топографічних цілей. У результаті раніше проведених експериментальних робіт визначено технічні вимоги до створення аерознімальних БПЛА. Саме за цими вимогами сконструйовано одну з останніх розробок БПЛА Arrow. Для апробації створеної моделі літака розроблено технологічну схему випробування з метою визначення конструкторських недоліків та отримання відповідних кондиційних матеріалів аерознімання для подальшого опрацювання: створення великомасштабних топографічних планів та ортофотопланів. Результати. У результаті проведення експериментальних робіт із застосуванням БПЛА Arrow виявлено можливі проблеми, пов’язані з запуском БПЛА та наведені засоби їх усунення. В результаті апробаційного аерознімання з БПЛА Arrow отримано 132 знімки з 7 маршрутів. Для проведення оцінки точності визначення координат точок місцевості, на ділянці дослідження замарковано 57 контрольних точок. Координати контрольних точок визначалися під час проведення ПВП GPS-приймачами Trimble R7 у режимі RTK. Після створення ортофотопланів у програмному пакеті Digitals на цих матеріалах виміряні координати вищеозначених контрольних точок і визначені СКП. СКП планових координат становили: mx = 0,19 м, my = 0,11 м, що підтверджує можливість створення планів у масштабі 1:2000. Наукова новизна. Розроблено та досліджено БПЛА Arrow, застосування якого дає змогу виконувати аерознімання та опрацьовувати великомасштабні ортофотоплани з необхідною точністю. Практична значущість. Доведено можливість застосування матеріалів, отриманих за результатами аерознімання з БПЛА Arrow, для опрацювання ортофотопланів в масштабі 1:2000.Item Technological features of creation of a large-scale topographical plan of Lviv city landfill using combined method(Видавництво Львівської політехніки, 2016) Lozynskiy, V.; Nikylishyn, V.; Ilkiv, T.Purpose. The compliance with maintenance requirements of a landfill is an important factor that have affects on its functioning. The functioning of Lviv city landfill started in 1959 and continued till 2016. According to evidences from various resolutions, regulations, and scientific publications, it was used and exploited with disabilities and did not meet environmental and sanitary standards. On May 30, 2016 a waste flow slide occurred in consequence of fire and its extinguishing. To update the topographic information about the situation at the landfill, and to correct the remediation project, the following tasks should be performed: to create a topographical plan of scale 1 : 500 with a contour interval of 0.5m, to identify technological features of combined methods using UAV TRIMBLE UX-5 and the electronic total station Leica TCR 405, and to select and take into account the peculiarities of the researched object. Methodology and results. When creating large-scale topographic plans for different kinds of objects it should be noted that each object has its own peculiarities that should be considered. In the process of the territory reconnaissance, the boundaries of the surveyed site were determined and the possibility of applying an aerial survey by UAV and remote method of tacheometry survey were considered. According to the purpose, the large-scale topographical plan of Lviv city landfill with the scale of 1 : 500 with 0.5 m relief interval with coordinate system SC-63 and Baltic height system was created using combined methods. Additionally control of created DEM was implemented, the root-mean-square errors of the DEM were calculated before and after the use of technological operations and statistical methods. The results correspond to the requirements specified in the instructions for the topographic survey at an appropriate scale. Originality and practical significance. The developed and tested method of creating large-scale plans for the landfill enables designing organizations to solve a number of the following problems: designing new maps for storage place of solid waste, performing calculation of excavation works volume, creating working drawings for strengthening of existing dams and construction of new dams, and developing a plan for the location of the filtrate drainage system. Мета. Під час функціонування полігону ТПВ важливим факторам, який впливає на його роботу, є дотримання вимог щодо експлуатації. З початку роботи Львівського міського полігону ТПВ, а саме з 1959 р. і до 2016 p., як свідчать різні постанови, приписи та наукові публікації, він експлуатувався з порушеннями та не відповідав екологічним та санітарно-гігієнічним нормам. Внаслідок пожежі та результатів її гасіння ЗО травня 2016 р. стався зсув сміття. Для оновлення топографічної інформації про ситуацію на полігоні ТПВ, та для внесення коректив у проект рекультивації, слід виконати такі завдання: створити топографічний план у масштабі 1:500 з перерізом рельєфу через 0,5 м, а також визначити технологічні особливості комбінованого методу з використанням БПЛА TRIMBLE UX-5 та електронного тахеометра Leica TCR 405, виділити та врахувати особливості досліджуваного об’єкта. Методика та результати роботи. Під час створення великомасштабних топографічних планів різних об’єктів слід зазначити, що кожен має свої особливості, які слід врахувати під час розроблення планів. Під час виконання рекогностування місцевості вибрано межі ділянки знімання та можливості застосування аерознімання з використанням БПЛА та дистанційного методу тахеометричного знімання. Відповідно до поставленої мети створено великомасштабний топографічний план Львівського міського полігону ТПВ у масштабі 1:500 з січенням рельєфу 0,5 м у системі координат СК-63 та Балтійській системі висот комбінованим методом, виконано контроль побудованої ЦМР, обчислені СКП ЦМР до та після застосування технологічних операцій та статистичних методів. Отримані результати відповідають вимогам, зазначеним в інструкції з топографічного знімання відповідного масштабу. Наукова новизна та практична значущість. Розроблена та апробована методика складання великомасштабних планів для полігону ТПВ дає змогу для проектних організацій виконати низку таких завдань, а саме: проектування нових карт для складування ТПВ, виконання розрахунку об’єму земляних робіт, складання робочих креслень для укріплення та побудови нової дамби, розроблення плану розташування дренажної системи фільтрату.Item Методика визначення об'єму Львівського полігону ТПВ з використанням архівних картографічних матеріалів та БПЛА TRIMBLE UX-5(Видавництво Львівської політехніки, 2016) Лозинський, В. А.; Нікулішин, В. І.; Третяк, К. Р.; Шило, Є. О.Мета. Львівський полігон твердих побутових відходів має певні особливості, які повинні враховуватися пьід час розроблення методики визначення об’єму. А саме - початковий рельєф з сильною розчленованістю та перепадом висот більше як 70 м унеможливлює задавання початкової горизонтальної площини під час визначення об’єму. Що стосується сучасної поверхні сміттєвого тіла, то її ухили змінюються у межах від 0 до 85°, а перепад висот становить більше як 80 м. Це призводить до значних похибок за рельєф під час виконання аерофотознімання. Основною метою роботи є розроблення методики визначенім об’єму Львівського полігону твердих побутових відходів із використанням архівних картографічних матеріалів та даних аерофотознімання станом на жовтень 2015 року з урахуванням особливостей досліджуваного об’єкта. Методика та результати роботи. Незважаючи на розвиток сучасних технологій та цифрової картографії, паперові карти залишаються надалі джерелом отримання інформації, яка може використовуватись в подальшому для виконання багатьох наукових задач. Отримання даних для визначення об’ємів полігонів твердих побутових відходів можливе за допомогою дистанційних та контактних методів. Серед дистанційних методів великого застосування набувають безпілотні літальні апарати. Відповідно до поставленої мети ми відтворили початковий рельєф полігону ТПВ станом на 1957 рік. Виконано аерофотознімання Львівського полігону ТПВ станом на жовтень 2015 року із застосуванням БПЛА TRIMBLE UX-5. Визначено об’єм та площу полігону. Експериментально встановлено, що визначення об’ємів потрібно виконувати за TIN-mo- делями. А використання GRID-моделей з кроком від 5 см до 20 м не дає можливості визначити об’єм Львівського полігону ТПВ. Розраховано оцінку точності визначення об’єму Львівського полігону твердих побутових відходів. Отримані результати на основі геодезичних даних порівняні з ваговим методом. Наукова новизна та практична значущість. Вперше в Україні визначено об’єм чинного полігону ТПВ. Запропонована методика визначення об’єму з використанням БПЛА. Також вперше змодельована початкова поверхня та структура рельєфу Львівського полігону ТПВ із використанням архівних картографічних матеріалів станом на 1957 р. Практична значущість результатів полягає у запропонованій авторами методиці, яка дає змогу оперативно визначати параметри полігону відповідно до ДБН В.2.4-2-2005. Цель. Львовский полигон твердых бытовых отходов имеет определенные особенности, которые должны учитываться при разработке методики определения объема. А именно, начальный рельеф с сильной расчлененностью и перепадом высот более 70 м исключает задания начальной горизонтальной плоскости при определении объема. Что касается современной поверхности мусорного тела, то ее уклоны изменяются в пределах от 0 до 85°, а перепад высот составляет более 80 м. Это приводит к значительным погрешностям за рельеф при выполнении аэрофотосъемки. Основной целью работы является разработка методики определения объема Львовского полигона твердых бытовых отходов по архивным картографическим материалам и данным аэрофотосъемки состоянием на октябрь 2015 года с учетом особенностей исследуемого объекта. Методика и результаты. Несмотря на развитие современных технологий и цифровой картографии, бумажные карты остаются в дальнейшем источником получения информации, которая может служить в дальнейшем для решения ряда научных задач. Получение данных для определения объемов полигонов твердых бытовых отходов возможно с помощью дистанционных и контактных методов. Среди дистан¬ционных методов все большее применение получают беспилотные летательные аппараты. В соответствии с поставленной целью мы воссоздали первоначальный рельеф полигона ТБО по состоянию на 1957 год. Выполнены аэрофотосъемки Львовского полигона ТБО по состоянию на октябрь 2015 года с применением БПЛА TRIMBLE UX-5. Определены объем и площадь полигона. Экспериментально установлено, что определение объемов следует выполнять по TIN-моделям. А использование GRID-моделей с шагом от 5 см до 20 м. В достаточной мере точно не дает возможности определить объем Львовского полигона ТБО. Научная новизна и практическая значимость. Впервые в Украине определен объем действующего полигона ТБО. Предложена методика определения объема с использованием БПЛА. Также впервые смоделирована начальная поверхность и структура рельефа Львовского полигона ТБО по архивным картографическим материалам состоянием на 1957 г. Практическая значимость заключается в предложенной авторами методике, которая позволяет оперативно определять параметры полигона в соответствии с ДБН В.2.4-2-2005. Purpose. Lviv landfill has some features that should be considered when developing the methodology for determining the volume . The initial relief of severe fragmentation and a height difference of more than 70 meters make it is impossible to set the original horizontal plane for determining the volume . The slope of current garbage body surface ranges from 0 to 85 degrees and a vertical drop is more than 80 m. This leads to significant relief errors in carry out for aerialphotography . The main purpose is development of methodology for determining the volume of Lviv landfill using archival cartographic materials and data of aerialphotography in October 2015 taking into account the features of the object. Methodology and results . Despite the development of modern technologies and digital cartography paper maps are source of information that can be used to solve a number of scientific problems . Obtaining data for determining the volume of landfill is possible through the use of remote and contact methods . The most popular among remote methods are UAV . According to our purpose, we have reproduced the original relief of landfill in 1957. Conducted aerialphotography of Lviv landfill in October 2015 using UAVs TRIMBLE UX-5 . Determined volume and area of the Lviv landfill . Experimentally establish that the volume should be determined by TIN models . Because the use of GRID models in increments of 5 cm to 20 m does not enable to accurately determine the volume of Lviv landfill . Conducted accuracy estimation of the volume of Lviv landfill . The results based on geodetic data were compared with weight method data. Scientific novelty and practical significance. The first in Ukraine was determined the volume of existing landfills . Proposed new methodology of determining the volume using UAVs . Also conducted modeling of the initial surface and relief structure of Lviv landfill using archival cartographic materials in 1957. The practical significance of obtained results is the proposed by the author’s methodology that allows operatively determine the parameters of the landfill in accordance with DBN V .2.4-2-2005.Item Аналіз сучасних методів знімання під час опрацювання великомасштабних планів(Видавництво Львівської політехніки, 2016) Глотов, В. М.; Гуніна, А. В.Мета. Проведення аналізу сучасних методів знімання під час опрацювання великомасштабних планів. Методика. Створення великомасштабних планів є важливим завданням в галузі картографування України, оскільки наявні топографічні плани з часом потребують оновлення, тому що перестають відповідати сучасному стану місцевості. Сфера застосування великомасштабних планів є різноманітною: розробка генеральних планів міст та сільських населених пунктів, інженерна підготовка та озеленення територій міст і селищ, складання проектів осушення та зрошення земель сільськогосподарського призначення, ведення кадастру населених пунктів тощо. Тому важливим завданням є проведення робіт із оновлення та створення топографічних планів, які будуть застосовуватись для потреб, які згадані вище. До того ж неякісна кадастрова інформація в базах даних, яка створювалась впродовж багатьох років, призводить до виникнення проблем із межуванням сусідніх ділянок. Тому виправлення цих помилок також є актуальним завданням. Для того, щоб визначити оптимальний варіант вирішення питань, згаданих вище, автори наводять порівняльну харак¬теристику геодезичного методу та методів дистанційного зондування Землі (ДЗЗ) для опрацювання великомасштабних планів. В результаті проведеного аналізу можна зробити висновок, що саме недоліки традиційних засобів знімання (отримання даних за допомогою космічних супутників, повітряних пілотованих апаратів та тахеометрів) стали передумовами застосування безпілотних літальних апаратів (БПЛА) з топографічною метою. Результати. На основі аналізу методів знімання з метою створення велико¬масштабних планів були відзначені переваги та недоліки застосування кожного з методів. Внаслідок цього зроблено висновок, що порівняно з іншими методами ДЗЗ та геодезичним методом, під час застосування БПЛА виникає можливість оперативно створювати великомасштабні плани (1:2000, 1:1000, 1:500) з відповідною точністю визначення координат. Наукова новизна. В результаті проведеного дослідження виконано аналіз технологій сучасних методів зніманім, та на його основі зроблені висновки щодо переваг методу опрацювання великомасштабних планів із застосуванням БПЛА. Практична значущість. Обгрунтування можливості застосування знімків, отриманих за результатами аерознімання з БПЛА невеликих за площею територій (8-10 км2), для створення великомасштабних планів у масттттабах 1:2000, 1:1000, 1:500. Головною перевагою БПЛА є те, що вихідні дані аерознімання можна також застосовувати для одержання просторової інформації у важкодоступних зонах, моніторингу потенційно небезпечних для життя людини об’єктів, інвентаризації земель населених пунктів.Цель. Проведение анализа современных методов съемки при обработке крупномасштабных планов. Методика. Создание крупномасштабных планов является важной задачей в области картографирования Украины, поскольку имеющиеся топографические планы со временем нуждаются в обновлении, так как перестают соответствовать современному состоянию местности. Сфера применения крупномасштабных планов разнообразна: разработка генеральных планов городов и сельских населенных пунктов, инженерная подготовка и озеленение территорий городов и поселков, составление проектов осушения и орошения земель сельскохозяйственного назначения, ведения кадастра населенных пунктов. Поэтому важной задачей является проведение работ по обновлению и созданию топографических планов, которые будут применяться для нужд, упомянутых выше. К тому же некачественная кадастровая информация в базах данных, которая создавалась на протяжении многих лет, приводит к возникновению проблем с определением границ соседних участков. Поэтому исправление этих ошибок также является актуальной задачей. Для того, чтобы определить опти¬мальный вариант решения этих вопросов, авторы приводят сравнительную характеристику геодезического метода и методов ДЗЗ для обработки крупномасштабных планов. В результате проведенного анализа необходимо сделать вывод, что именно недостатки традиционных средств съемки (получение данных с помощью космических спутников, воздушных пилотируемых аппаратов и тахеометров) стали предпосылками применения БПЛА в топографических целях. Результаты. На основе анализа методов съемки с целью создания крупномасштабных планов были отмечены преимущества и недостатки применения каждого из методов. В результате сделан вывод, что в сравнении с другим методам ДЗЗ и геодезическим методам, при применении БПЛА возникает возможность оперативно обрабатывать крупномасштабные планы (1: 2000, 1:1000, 1:500) с соответствующей точностью определения координат. Научная новизна. В результате проведенного исследования выполнен анализ технологий современных методов съемки, и на его основании сделаны выводы о преимуществах метода обработки крупномасштабных планов с применением БПЛА. Практическая значимость. Обоснование возможности применения снимков, полученных по результатам аэросъемки с БПЛА небольших по площади территорий (8-10 км2), для обработки планов в масштабе 1: 2000, 1:1000, 1:500. Главным преимуществом БПЛА является то, что исходные данные аэросъемки можно применять для получения пространственной информации в труднодоступных зонах, мониторинга потенциально опасных для жизни человека объектов, инвентаризации земель населенных пунктов. Aim. Analysis modern methods surveying of processing large-scale plans. Method. Creating large-scale plans is an important task in mapping Ukraine because the existing topographic plans eventually need to be updated because it no longer meets the current state of the area. The scope of large-scale plans are diverse: the development of general plans of cities and rural areas, landscaping and engineering training areas of cities and towns, drafting drainage and irrigation of agricultural land cadastre settlements and so on. So important is carrying out works on updating and creating topographical plans that will be used for the purposes referred to above. In addition, poor quality cadastral information in databases, created over the years, leading to problems with surveying the neighboring areas. Therefore, the correction of these errors is also urgent task. In order to determine the best option to address these issues, the authors bring characteristics of geodetic methods and techniques of remote sensing to handle large-scale plans. The analysis must conclude that it is the shortcomings of traditional means of removal (receiving data using space satellites, manned aerial vehicles and total stations) were the preconditions for the application of UAVs in topographic purposes. Results. Based on the analysis methods of removal in order to create large-scale plans were marked advantages and disadvantages of each method. Consequently, it is concluded that in contrast to other methods of remote sensing and geodetic methods, the application of UAV becomes possible to efficiently handle large-scale plans (1: 2000, 1:1000, 1:500) with appropriate accuracy of the coordinates. Scientific novelty. The study made analysis of the technologies of modern methods of removal, and on the basis of its conclusions on an optimized method of processing large-scale plans of using UAVs. The practical significance. Justification possibility of using images obtained from the UAVs aerosurveying results small areas (8-10 km2 to create the plans at 1: 2000, 1:1000, 1:500. The main advantage of UAVs is that the aerosurveying original data can also be used for the acquisition of spatial information in remote areas, monitoring potentially dangerous to human life objects inventory ofland settlements.Item Аналіз результатів для створення ортофотопланів та цифрових моделей рельєфу із застосуванням БПЛА TRIMBLE UX-5(Видавництво Львівської політехніки, 2015) Вовк, А.; Глотов, В.; Гуніна, А.; Маліцький, А.; Третяк, К.; Церклевич, А.Метою цієї роботи є аналіз та дослідження можливостей безпілотних літальних апаратів (БПЛА) Trimble UX5 для створення ортофотопланів і цифрових моделей рельєфу (ЦМР), а також виявлення і усунення можливих недоліків під час аерознімання та опрацювання аерознімків. Методика. Перед початком аерознімальних робіт проводилось рекогносцирування місцевості. Для кобрирування та глісади обирали майданчики, які мали відповідні площадні параметри, вказані у технічних характеристиках БПЛА. Для підготовчих проектно-розрахункових робіт використовувалось програмне забезпечення Trimble Access Aerial Imaging, яке інсталювалось у захищений польовий контролер Trimble Tablet, що застосовується для управління UX5. Аерознімання з БПЛА виконувалось цифровою камерою SONY NEX 5R. Оскільки на БПЛА UX5 не передбачено встановлення двохчастотного GPS-приймача для отримування у польоті значень центрів проекцій, то зроблено розряджену планово-висотну прив’язку (ПВП) розпізнавальних знаків. Для оперативного створення ортофотопланів застосовували фотограмметричний модуль Trimble Business Center Photogrammetry Module фірми Trimble, за допомогою якого створювали хмару точок, трикутну нерегулярну сітку (TIN-модель) і план з відображенням горизонталей місцевості, над якою проводилося аерознімання. Для підтвердження можливості застосування цифрового стереофотограмметричного методу розраховано апріорну оцінку точності просторових координат місцевості. Для оцінювання точності на місцевості визначено контрольні точки на трьох експериментальних ділянках. Координати контрольних точок визначали під час проведення ПВП GPS-приймачами Trimble R7 у режимі RTK. Після створення ортофотопланів на них виміряні координати вищеозначених контрольних точок і обчислено середні квадратичні похибки (СКП) відносно координат, виміряних на місцевості. Результати. За аерозніманням, проведеним з висот 150 м, 200 м та 300 м, за отриманими зображеннями, були обчислені СКП положення контурних точок місцевості, які підтверджують можливість застосування літаків моделі Trimble UX5 для складання топографічних планів у масштабах 1:500, 1:1000 та 1:2000 з перерізом горизонталей 0,5-1 м для цих масштабів. Наукова новизна. На підставі критичного аналізу конструкторських та експлуатаційних особливостей БПЛА Trimble UX5 розроблено технологічну схему оцінки придатності БПЛА для аерознімального процесу як за кількісними, так і за якісними параметрами. Це дасть можливість у подальшому оцінювати будь-які моделі БПЛА стосовно застосування їх у цифровому стереофотограмметричному методі створення великомасштабних ортофо¬топланів та топографічних планів. Практична значущість. Застосування БПЛА Trimble UX5 дає можливість знімати території сільської місцевості, отримуючи необхідну точність для складання великомасштабних топографічних і кадастрових планів під час застосування цифрового стереофотограмметричного методу, що дає змогу значно здешевити процес створення вищеозначених планів. Целью данной работы является анализ и исследование возможностей беспилотного летательного аппарата (БПЛА) Trimble UX5 для создания ортофотопланов и цифровых моделей рельефа (ЦМР), а также выявления и устранения возможных недостатков в процессе аэросъемки и обработки аэроснимков. Методика. Перед началом аэросъемочных работ проводилось рекогносцировка местности. Для кабрирования и глиссады выбирались площадки, которые имели соответствующие площадные параметры, указанные в технических характеристиках БПЛА. Для подготовительных проектно-расчетных работ использовалось программное обеспечение Trimble Access Aerial Imaging, которое инсталировалось в защищенный полевой контроллер Trimble Tablet, который применяется для управления UX5. Аэросъемка с БПЛА выполнялась цифровой камерой SONY NEX 5R. Поскольку на БПЛА UX5 не предусмотрено установление двухчастотного GPS-приемника для получения в полете значений центров проекций, то было сделано разреженную планово¬высотную привязку (ПВП) опознавательных знаков. Для оперативного создания ортофотопланов применяли фотограмметрический модуль Trimble Business Center Photogrammetry Module, фирмы Trimble, с помощью которого можно создать облако точек, треугольную нерегулярную сетку (TIN-модель) и план с отображением горизонталей местности над которой проводилась аэросъемка. Для подтверждения возможности применения цифрового стереофотограмметрического метода рассчитано априорную оценку точности пространственных координат местности. Для проведения оценки точности определялись контрольные точки на трех экспериментальных участках. Координаты точек определялись при проведении ПВП GPS - приемниками Trimble R7 в режиме RTK. После создания ортофотопланов на них были измерены координаты вышеуказанных точек и вычислено средние квадратичные погрешности (СКП) относительно координат измеренных на местности. Результаты. По аэросъемке проведенной с высот 150 м, 200 м и 300 м по полученным изображениями были вычислены СКП положения контурных точек местности, которые подтверждают возможность применения самолетов модели Trimble UX5 для составления топографических планов в масштабах 1: 500, 1: 1000 и 1: 2000 с сечением горизонталей 0,5-1 м для этих масштабов. Научная новизна. На основании критического анализа конструкторских и эксплуатационных особенностей БПЛА Trimble UX5 разработана технологическая схема оценки пригодности БПЛА для аэросъёмочного процесса как по количественным так и по качественным параметрам. Это позволит в дальнейшем оценивать любые модели БПЛА относительно их применения в цифровом стереофотограмметрическом методе создания крупномасштабных ортофотопланов и топографических планов. Практическая значимость. Применение БПЛА Trimble UX5 позволяет снимать территории, получая необходимую точность для составления крупномасштабных топографических и кадастровых планов с применением цифрового стереофотограмметрического метода, что позволяет значительно удешевить процесс создания вышеуказанных планов. The purpose of this paper is to analysis and research capabilities of unmanned aerial vehicle (UAV) Trimble UX5 to create orthophotomap and digital elevation models (DEM), as well as identifying and addressing possible shortcomings in the aerial survey and processing of aerial photographs. Methods. Before starting aerosurveying conducted reconnaissance of the area. For nose-up and glide-path elected corresponding surface area on the ground had areal options on listed specifications for the UAV, and satisfy the conditions for launching and landing UAV.For preliminary design and calculation works software was used Trimble Access Aerial Imaging, which install a protected field controller Trimble Tablet, which is used to control UX5.UAV aerial survey was carried out with a digital camera SONY NEX 5R.Since the UAV UX5 stipulated the establishment of two-frequency GPS- receiver for in-flight values of projection centers, it was done discharged horizontal and vertical tie-in markings.For operative creation of orthophotomap used photogrammetric module Trimble Business Center Photogrammetry Module, the company Trimble, with which you can create a point cloud, triangular irregular grids (TIN- model) and plan to display contour lines, terrain over was carried out aerial aerosurveying.To confirm the possibility of using digital stereophotogrammetric method calculated apriori estimate of the accuracy of the spatial coordinates of the area. To assess the accuracy of the terrain defined checkpoints at three pilot sites. Coordinates of points determined during VFR GPS - receivers Trimble R7 mode RTK. After creating orthophotomap they measured the coordinates of the above points and calculated root-mean-square error measured relative to the coordinates on the ground. Results. For aerial survey conducted with a height of 150 m, 200 m and 300 m on the received images were calculated mean square error provisions terrain contour points, which confirm the possibility of using aircraft model Trimble UX5 to produce topographic maps at scales of 1: 500, 1: 1000 and 1: 2000 section 0.5-1 m contour for these scales and 1 m for the third scale. The scientific novelty. Based on a critical analysis of the design and operational features Trimble UX5 UAV developed technological scheme to evaluate the fitness of UAV aerosurveying both quantitative and qualitative parameters. This will enable further evaluate any models UAV regarding their use in digital stereofotohrammetryc method of creating large-scale orthophotomap and topographical plans. The practical significance The use of UAVs Trimble UX5 allows you to take difficult territory, with the required precision to produce large-scale topographic and cadastral plans in the application of digital stereophotogrammetric method that can significantly reduce the cost of the process of creating the above plans.