Ukrainian Journal of Mechanical Engineering and Materials Science
Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/31565
Browse
Search Results
Item Simulation of the stress-strain state and determination of the natural frequency of the laboratory centrifuge shaft vibration using ansys and kisssoft(Видавництво Львівської політехніки, 2023-02-28) Lavrenko, Iaroslav; Sydora, Tetiana; Sushchenko, Maksym; Chaikovska, Olena; National Technical University of Ukraine "Ihor Sikorsky Kyiv Polytechnic Institute"The rotor is a key element of high-speed mechanisms that are widely used in various industries, such as laboratory centrifuges used to separate mixtures of different fractions, gas turbines, industrial compressors, engines, and others. The main requirement for such mechanisms is reliability and safety during operation. To ensure the above requirements, it is necessary to determine the stress-strain state of the most loaded structural elements of the system and the dynamic characteristics. This paper presents an analysis of the stress-strain state of a rotor system using the example of a Pico21 laboratory centrifuge. The Ansys and KISSsoft software packages were used for 3D modelling of the finite element model. The system consists of a flexible shaft with a rotor, the rotor mass was changed during the simulation and supports, the role of which is performed by bearings. A comparative analysis of the obtained results of the stress-strain state is presented, which further makes it possible to carry out appropriate calculations taking into account stress concentrators to determine the durability and lifetime of high-speed mechanisms. The stresses are determined according to the von Mises and Tresca criteria. The paper also presents the results of the calculation and analyses the natural frequencies of the rotor system. Further studies, it is planned to determine the natural frequencies of vibration, taking into account gyroscopic effects, which are necessary to determine the resonant frequencies and zones of stable operation of the system.