Ukrainian Journal of Mechanical Engineering and Materials Science
Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/31565
Browse
2 results
Search Results
Item Optimization of welding modes for high-strength low-alloy domex 700 steel(Lviv Politechnic Publishing House, 2017-10-19) Dzyubyk, Andrii; Palash, Volodymyr; Khomych, Ivan; Hrynus, Stanislav; Lviv Polytechnic National UniversityThe microstructure and hardness of the weld joints of DOMEX 700 steel were investigated. As a result, the optimization of the parameters of robotic arc welding in the environment of protective gases was carried out taking into account the size of the energy per unit length. The optimum modes of welding were determined. The size of the deterioration area, where there is a decrease in hardness in comparison with the main metal, for a thickness of 6 mm is 2.36 mm, and for a thickness of 3 mm is 1.51 mm. The parameters of the robotic welding process in the arc mode in the environment of protective gases for the investigated thicknesses of the DOMEX 700 steel were recommended. As a result, the energy-saving conditions for welding performing were achieved ensuring the required technological strength.Item Thermal processing of ZR-1 %NB tube in oxygenand nitrogen containing gaseous mediums(Publishing House of Lviv Polytechnic National University, 2016) Trush, Vasyl; Luk’yanenko, Alexander; Fedirko, ViktorZirconium alloys have unique properties (physical, mechanical, radiation) is therefore are an essential structural material for nuclear energy. A feature of these alloys is high affinity to the interstitial elements (O, N). Saturation of oxygen and nitrogen occurs during the technological and exploitation heating. The dissolved interstitial elements greatly effect on the properties of finished products. The proposed results of experimental researches will expand the notions of patterns of relationship of the influence of elements interstitial on the properties of the zirconium alloy. The work presents results of the saturation of Zr-1 %Nb tubes after processing in oxygen- and nitrogen- containing gas environments. The distribution of micro-hardness and the size of the hardened layers in the section of the tube wall and the weight gain were determined. It is found that the oxidation of the Zr-1 %Nb alloy (Т = 650 °С, РО2 = 2.6·10-1 Pа, τ = 3…20 h) makes a greater weight gain than after nitriding (Т = 650 °С, τ = 5…20 h). The state of the surface of the inside and outside of Zr-1 %Nb tubes for fuel cladding depends of the processing time. The differences in saturation of outer and inner surfaces of the tube were registered. In particular, the hardness of internal surface of the tube is smaller relative to the outer surface after oxidation and nitriding processes. The results of study of the outer and inner surface of fuel cladding in contact with gaseous environment containing oxygen and nitrogen will be interesting for investigators of reactor materials.