Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Фотоелектронне формування сигналу в сканувальному телевізійному оптичному мікроскопі
    (Видавництво Львівської політехніки, 2014) Гой, В. М.; Гудзь, Б. В.; Шклярський, В. І.
    Описано особливості застосування фотоелектронних перетворювачів оптичного випромінювання на електричний сигнал та вимоги до їх параметрів у разі використання в сканувальному телевізійному оптичному мікроскопі. Запропоновано класифікацію фотоелектронних перетворювачів. Розглянуто характерні особливості різних видів фотоелектронних перетворювачів та можливості їхнього застосування в сканувальній оптичній мікроскопії. This paper presents a method of determining the necessary sensitivity for photoelectronic transducer (PET) in scanning television optical microscope (STOM), which is used for biological microobject studying. High resolution cathode ray tube is used in the STOM for test microobject illumination. On the screen of this tube a scanning raster is being formed. This raster allows you to create an image of microobjects, whose resolution exceeds 4000x4000 elements. The proposed principle of microobject scanning using light probe with subsequent computer image processing has several advantages compared to optical microscopy – possibility of quantitative measurements within individual fragments of tested microobjects; flexibility to control the measurement process; reducing the duration of the study; higher resolution. These advantages allow to use the new method for studying microobjects extensively, including the ultraviolet radiation range. To generate an electric signal which amplitude is proportional to the luminous flux coming from the test microscopic element, PET is being used. The method for determining sensitivity of the PET is proposed in this article. This technique takes into account the design parameters of optical channel: transmission ratio of condenser lens in the optical channel; the solid angle within which the luminous flux from the object reaches the condenser lens, the entrance pupil area of condenser lens. While determining the required PET sensitivity load impedance of transducer, required signal/noise ratio for obtaining desired quality of the formed image and video bandwidth for the selected definition of microscopic images are considered. The classification of PET, suitable for use in the STOM, which will optimize the choice of the PET for the optical channel, depending on the capabilities of the microscope and its alleged main technical parameters is developed. The main classification PET features are: physical operation principle, spectral operation range, number of photosensitive elements, number of optical data input channels, frequency properties, and type of output signal.
  • Thumbnail Image
    Item
    Точність визначення параметрів двох динамічних мікрооб'єктів за допомогою телевізійного сканувального оптичного мікроскопа
    (Видавництво Львівської політехніки, 2013) Шклярський, В. І.; Матієшин, Ю. М.; Баланюк, Ю. В.; Гудзь, Б. В.
    At the present stage of technological development there are more problems associated with micro- and nanotechnology. Among such problems occupy an important place task analysis of dynamic processes and several dynamic microobjects (MO) parameters simultaneously in view of the microscope in different fields (medicine, microbiology, ecology, microelectronics etc.). Identification number of dynamic parameters (for example, mobility) of some living cells and their components occurs mainly by using optical microscopy methods. To determine the mobility is most often used in two ways: 1) the method of fluorescence microphotographs analysis; 2) the method of quantitative fluorescence confocal laser scanning microscopy. Using these methods were quantitatively and qualitatively describes the process of intracellular transport, particularly cytoplasm-nuclear, kinetic accumulation in the nucleus of cells of different types of proteins, localization of drugs aimed at developing ways to intracellular delivery of anticancer drugs. To solve these and many such important tasks in the fields of medicine and microbiology can be successfully used television scanning optical microscope (TSOM) based on cathode ray tubes ultrahigh resolution, as provided in this scan resolution up to 0.1 ... 0.2 micron. This article contains analysis of the capabilities of this microscope in the case of the simultaneous study of several MO, which are move randomly - with variable speed and direction of motion. The basic principles of TSOM work in determining the dynamic parameters of separate MO and averaged parameters of several MO are submitted. Track each individual MO occurs by the use of scan mode of miniraster, the center of which the current frame is formed with coordinates that correspond to coordinates of the center of the MO in the previous frame scan. Interval of definition of coordinate position of each MO in sight of TSOM corresponds to the duration of one frame scanning at a constant speed scanning. Dimensions of the scanning raster should be reduced to the values 1...10% of the full-scale raster, while receiving miniraster. However, a scan should be used for MO of proportionate size with minimal scanning spot that move randomly at high speed. Among the MO for which the use of the scanning mode is not appropriate, you can select one or several MO simultaneously with large size (5...40 % of the full-scale raster in the plane of study). For such MO should be used only scanning with a full-scale square raster. Based on these considerations, we construct a mathematical model of the scanning process and analyze the significance of dynamic parameters which can be determined by TSOM using scan mode with a full-scale raster and tracking eachMO by miniraster. Розглядаються питання використання телевізійного сканувального оптичного мікроскопа для визначення різних параметрів динамічних мікрооб’єктів, які перебувають у групі, із застосуванням режимів сканування повноформатним растром та слідкування за кожним окремим мікрооб’єктом за допомогою сканувального мінірастра. Наведені принципи роботи мікроскопа, що забезпечують визначення параметрів як окремих динамічних мікрооб’єктів, так і групи загалом.