Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Моделювання пружно-динамічних ефектів земної кори під атомними електростанціями (на прикладі Чорнобильської АЕС)
    (Видавництво Львівської політехніки, 2015) Стародуб, Ю. П.; Кендзера, О. В.; Купльовський, Б. Є.; Брич, Т. Б.; Прокопишин, В. І.; Олещук, О. П.; Олещук, Є. І.
    Мета. Метою роботи є створення методики моделювання сейсмічних хвильових полів для широкого класу вертикально- і горизонтально-неоднорідних шаруватих середовищ. Моделювання дасть змогу точніше оцінити характеристики осадових товщ під час дослідження передаточних характеристик середовища під інженерними спорудами. Методика. Моделювання в області інженерної сейсміки потребує використовувати широкий частотний діапазон (у межах частот від 0 до 200 Гц) для дослідження всіх можливих впливів на інженерні споруди. Для розв’язання прямої задачі необхідно використовувати математичні методи моделювання, які дають змогу враховувати різні види і форми неоднорідностей, а також враховувати складну будову осадового шару. Дослідження проводилося через розв’язання прямої динамічної задачі сейсміки методом скінчених елементів. Цей метод математичного моделювання дає можливість проводити розрахунки для моделей, які є складні за своєю будовою. Під час розв’язання прямої динамічної задачі сейсміки вказаним методом коливання середовища розраховуються для кожного моменту часу, тому не втрачається можливість врахування різних обмінних ефектів всередині моделі, а також розраховуємо моделі з різною складною геометричною будовою середовища та різноманітними включеннями. Для моделювання використовувалися наявні двомірні моделі середовища. Під час завдання сигналу у вигляді, близькому до дельта-імпульсу, отримано відклик середовища у повному можливому діапазоні частот коливання моделі, без додаткового оброблення вихідних результатів. Результати. Створений програмний пакет для математичного моделювання сейсмічного хвильового поля. Результатом моделювання є отримане поле переміщень, швидкостей переміщень, прискорення, а також відповідні частотні характеристики для цієї моделі. Наукова новизна. Отриманий у результаті досліджень програмний пакет дає змогу в інтерактивному режимі досліджувати динамічні характеристики і резонансні частоти осадового шару. Практична значущість. У результаті досліджень отримане хвильове поле і частотна характеристика осадового шару під інженерною спорудою. Аналіз частотних характеристик середовища дає можливість отримати резонансні частоти, які потрібно враховувати при проектуванні великих інженерних конструкцій. Цель. Целью работы является создание методики моделирования сейсмических волновых полей для широкого класса вертикально- и горизонтально-неоднородных слоистых сред. Моделирование позволит более точно оценить характеристики осадочных толщ при исследовании передаточных характеристик среды под инженерными сооружениями. Методика. При моделировании в области инженерной сейсмики нужно использовать широкий частотный диапазон (в пределах частот от 0 до 200 Гц) для исследования всех возможных воздействий на инженерные сооружения. При решении прямой задачи необходимо использовать математические методы моделирования позволяющие учитывать различные виды и формы неоднородностей, а также учитывать сложное строение осадочного слоя. Исследования проводились путем решения прямой динамической задачи сейсмики методом конечных элементов. Данный метод математического моделирования позволяет проводить расчеты для сложных по своему строению моделей. При решении прямой динамической задачи сейсмики этим методом колебания среды рассчитываются как одно целое для каждого момента времени, поэтому не теряется возможность учета различных обменных эффектов внутри модели, а также мы можем рассчитывать модели разной сложности геометрического строения среды и различными включениями. Для моделирования использовались существующие двумерные модели среды. При задании сигнала в виде близком к дельта импульса мы получаем отклик среды в полном возможном диапазоне частот колебания модели, без дополнительной обработки исходных результатов. Результаты. Созданный программный пакет для математического моделирования сейсмического волнового поля. Результатом моделирования является полученное поле перемещений, скоростей перемещений, ускорений а также соответствующие частотные характеристики для данной модели. Научная новизна. Полученный в результате исследований программный пакет позволяет в интерактивном режиме исследовать динамические характеристики и резонансные частоты осадочного слоя. Практическая значимость. В результате исследований получено волновое поле и частотная характеристика осадочного слоя под инженерным сооружением. Анализ частотных характеристик среды позволяет получить резонансные частоты, которые нужно учитывать при проектировании крупных инженерных конструкций. Purpose. The aim of study is to create the method of seismic wave fields modeling for a broad class of vertically and horizontally inhomogeneous layered media. Simulation will make it possible to more precisely assess the characteristics of sedimentary strata in the study of the transmission characteristics of the environment under the engineering structures. Methodology. At modeling in engineering seismology should be used a wide frequency range (from 0 to 200 Hz) to study all possible effects on engineering structures. While solving the direct problem need to use mathematical modeling techniques that allow taking into account the different types and forms of inhomogeneities, as well as the complex structure of the sedimentary layer. The research was conducted by solving the direct dynamic problem of seismic with finite element method. This method of mathematical modeling allows calculations for models which are complicated in their structure. When solvingthe direct dynamic problem of seismicity with this method, wave propagation are calculated for each time point, so do not lose the ability to consider different exchange effects inside the model and also we can calculate models with different complex geometric structure and various inclusions. For simulations were used existing two-dimensional models. When setting signal as close to the i -impulse, we get the response in full possible frequency range of model without additional processing output results. Results. The software package for mathematical modeling of seismic wave field was created. A result of modeling are obtained field of displacements, velocities of displacement, acceleration, as well as appropriate frequency characteristics for this model. Originality. The software package obtained allows investigating dynamic characteristics and resonance frequencies of the sedimentary layer in interactive mode. Practical significance. Based on the results of research, the wave field and the frequency response of the sedimentary layer under the engineering structure were obtained. Analysis of frequency characteristics of environment provides a resonant frequency to be considered in the design of large engineering structures.
  • Thumbnail Image
    Item
    Моделювання хвильового поля методом скінченних елементів на структурі Дробишівського газоконденсатного родовища
    (Видавництво Львівської політехніки, 2012) Стародуб, Ю. П.; Брич, Т. Б.; Купльовський, Б. Є.
    Наведено результати моделювання сейсмічного хвильового поля на моделі розрізу земної кори (на прикладі Дробишівського газоконденсатного родовища). Розріз земної кори, отриманий геофізичними дослідженнями свердловин, подано у вигляді пластової моделі. Під час моделювання хвильового поля сейсморозвідки враховано особливості двовимірного розрізу - поздовжні, поперечні та обмінні хвилі, одержані на сейсмограмах поздовжніх і поперечних коливань. В работе представлены результаты моделирования сейсмического волнового поля на модели сечения земной коры (на примере Дробишивского газоконденсатного месторождения). Разрез земной коры, полученный геофизическим исследованием скважин, представлен в виде пластовой модели. При моделировании волнового поля сейсморазведки учитывались особенности двумерного сечения – продольные , поперечные и обменные волны, полученные на сейсмограммах продольных и поперечных колебаний. The results of seismic wave field modeling on the cross-section model of the crust (for Drobyshivske gas-condensate field example) were presen ted. The cut of the crust which resul ting the boreholes geophysical studies is represented as a reservoir model. When modeling, seismic wave field features of two-dimensional cross section were taken into account – longitudinal, transv erse and exchange waves re ceived on seismograms of longitudinal and transverse vibrations.
  • Thumbnail Image
    Item
    Моделювання хвильового поля на структурі газоконденсатного родовища
    (Національний університет “Львівська політехніка”, 2011) Стародуб, Ю. П.; Купльовський, Б. Є.; Гончар, Т. М.
    У роботі представлені результати моделювання сейсмічного хвильового поля на моделі перетину земної кори (на прикладі Дробишівського газоконденсатного родовища). Складнопобудований розріз земної кори, отриманий геофізичним дослідженням свердловин, представлений у виді пластової моделі. При моделюванні хвильового поля сейсморозвідки враховувалися особливості двовимірного перетину: поздовжні, поперечні і обмінні хвилі отримані на сейсмограмах поздовжніх і поперечних коливань унаслідок задання розподілу швидкостей поздовжніх, поперечних хвиль і густини середовища в півпросторі. В работе представлены результаты моделирования сейсмического волнового поля на модели сечения земной коры (на примере Дробишивского газоконденсатного месторождения). Сложнопостроенный разрез земной коры, полученный геофизическим исследованием скважин, представлен в виде пластовой модели. При моделировании волнового поля сейсморазведки учитывались особенности двумерного сечения: продольные, поперечные и обменные волны, полученные на сейсмограммах продольных и поперечных колебаний вследствие задания распределения скоростей продольных, поперечных волн и плотности среды в полупространстве. The results of seismic wave field modeling on the cross-section model of the crust (for Drobyshivske gascondensate field example) were presented. Complicated cut of the crust, resulting geophysical study, represented as a reservoir model. When modeling, seismic wave field features of two-dimensional cross section were taken into account: longitudinal, transverse and exchange waves received on seismograms of longitudinal and transverse vibrations as a result of default distribution of velocities of longitudinal, transverse waves and the density in half-space medium.