Вісники та науково-технічні збірники, журнали
Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12
Browse
2 results
Search Results
Item Алгоритм оперативного наведення засобів вимірювально–керувального вузла кіберфізичної системи на рухомий об’єкт(Видавництво Львівської політехніки, 2020-03-01) Кушнір, Д. О.; Парамуд, Я. С.; Kushnir, D.; Paramud, Y.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityЗа результатами аналізу літературних джерел встановлено. що одними з основних вузлів кіберфізичних систем є вимірювально–керувальні вузли. Одним із завдань, розв’язання яких покладено на такі вузли, є наведення засобів спостереження за рухомими об’єктами. Запропоновано алгоритм наведення, який полягає в оперативному опрацюванні результатів спостережень, передбаченні найімовірнішого напрямку руху та формуванні команд для максимального наближення зображення рухомого об’єкта до центра інформаційного кадру. Розроблений алгоритм базується на алгоритмі навчання з підкріпленням DDPG. Засоби розпізнавання реалізовують можливості моделі YOLOv3. Використані додаткові програмні фільтри для покращення якості розпізнавання. Алгоритм верифіковано на експериментальній фізичній моделі з використанням дрона. Результати експериментальних досліджень підтвердили функціонування алгоритму наведення в реальному часі.Item Методи пошуку та розпізнавання об’єктів у відеозображеннях на мобільній платформі IOS в реальному часі(Видавництво Львівської політехніки, 2019-03-01) Кушнір, Д. О.; Парамуд, Я. С.; Kushnir, D.; Paramud, Y.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityДосліджено особливості найпоширеніших методів і систем пошуку та розпізнавання об’єктів у відеозображеннях. За результатами дослідження показано доцільність побудови засобів пошуку та розпізнавання для платформи iOS у реальному часі. Запропоновано метод функціональної адаптації алгоритму пошуку та розпізнавання об’єктів до особливостей відеозображень, який полягає в опрацюванні відеозображення згладжуючим та мінімізаційним фільтрами, що забезпечує зменшення часу пошуку та розпізнавання об’єктів. Розроблено базову структурну схему таких засобів та алгоритм функціонування. Розроблено алгоритмічнопрограмні засоби для розв’язання завдання на знаходження та оперативне розпізнавання об’єктів у режимі реального часу мовою Swift під мобільну платформу iOS. Використано особливості згорткової нейронної мережі з архітектурою YOLOv3 та фреймворку для роботи з нейронними мережами під мобільні додатки CoreML. Запропоновано метод поліпшення роботи такої нейронної мережі, який оснований на квантизації вагових коефіцієнтів нейромережі та забезпечує мінімізацію розміру моделі та часу пошуку її об’єктів. Досліджено значення частоти оброблення кадрів зображень із використанням запропонованої моделі YOLOv3-KD та моделей нейронних мереж типу YOLOv3-tiny та YOLOv3-416. Доведено можливість функціонування запропонованих засобів у режимі реального часу.