Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Проблема збіжності процедури побудови класифікаторів у схемах логічних і алгоритмічних дерев класифікації
    (Видавництво Львівської політехніки, 2022-02-28) Повхан, І. Ф.; Povkhan, I. F.; Ужгородський національний університет; Uzhhorod National University
    Розглядається проблема збіжності процедури синтезу схем класифікаторів у методах логічних і алгоритмічних дерев класифікації. Запропонована верхня оцінка складності схеми дерева алгоритмів у задачі апроксимації масиву реальних даних набором узагальнених ознак з фіксованим критерієм зупинки процедури розгалуження на етапі побудови дерева класифікації. Даний підхід дає змогу забезпечити необхідну точність моделі, оцінити її складність, знизити кількість розгалужень та досягти необхідних показників ефективності. Вперше для методів побудови структур логічних і алгоритмічних дерев класифікації дана верхня оцінки збіжності побудови дерев класифікації. Запропонована оцінка збіжності процедури побудови класифікаторів для структур ЛДК/АДК дає можливість будувати економні та ефективні моделі класифікації заданої точності. Метод побудови алгоритмічного дерева класифікації базується на поетапній апроксимації начальної вибірки довільного об'єму та структури набором незалежних алгоритмів класифікації. Даний метод при формуванні поточної вершини алгоритмічного дерева, вузла, узагальненої ознаки забезпечує виділення найбільш ефективних, якісних автономних алгоритмів класифікації з початкового набору. Методи синтезу логічних і алгоритмічних дерев класифікації були реалізовані в бібліотеці алгоритмів програмної системи "ОРІОН ІІІ" для розв'язку різноманітних прикладних задач штучного інтелекту. Проведені практичні застосування підтвердили працездатність побудованих моделей дерев класифікації та розробленого програмного забезпечення. В роботі наведена оцінка збіжності процедури побудови схем розпізнавання для випадків логічних і алгоритмічних дерев класифікації в умовах слабкого та сильного розділення класів початкової начальної вибірки.
  • Thumbnail Image
    Item
    Метод обмежених структур логічних дерев у задачі класифікації дискретних об’єктів
    (Видавництво Львівської політехніки, 2021-10-10) Повхан, І. Ф.; Povkhan, I. F.; Ужгородський національний університет; Uzhhorod National University
    Розглянуто проблему побудови моделі логічних дерев класифікації на підставі обмеженого методу селекції елементарних ознак для масивів геологічних даних. Запропоновано метод апроксимації масиву реальних даних набором елементарних ознак з фіксованим критерієм зупинки процедури розгалуження на етапі побудови дерева класифікації. Цей підхід дає змогу забезпечити необхідну точність моделі, знизити її структурну складність та досягти потрібних показників ефективності. Розроблено обмежений метод побудови дерев класифікації, який спрямований на добудову тільки тих шляхів (ярусів) структури дерева класифікації, де є найбільша кількість помилок (усіх типів) класифікації. Такий підхід до синтезу моделі розпізнавання дає можливість доволі ефективно регулювати складність (точність) моделі дерева класифікації, що будується, причому доцільно застосовувати його в ситуаціях з обмеженнями щодо апаратних ресурсів інформаційної системи, обмеженнями точності та структурної складності моделі, обмеженнями на структуру, послідовність та глибину розпізнавання масиву даних навчальної вибірки. Обмежена схема синтезу дерев класифікації дає змогу будувати моделі майже на 20 % швидше. Побудоване логічне дерево класифікації безпомилково класифікуватиме (розпізнаватиме) всю навчальну вибірку, за якою побудована модель, матиме мінімальну структуру (структурну складність) та складатиметься із компонентів – наборів елементарних ознак як вершини конструкції, атрибутів дерева. На підставі запропонованої модифікації методу селекції елементарних ознак розроблено програмне забезпечення, яке дає змогу працювати з набором різнотипних прикладних задач. Запропоновано підхід до синтезу нових моделей розпізнавання на підставі обмеженої схеми логічних дерев та вибору параметрів препрунінгу. Тобто розроблена ефективна схема розпізнавання дискретних об’єктів на підставі покрокової оцінки і вибору наборів атрибутів (узагальнених ознак) за відібраними шляхами в структурі дерева класифікації на кожному кроці синтезу схеми.