Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 10 of 44
  • Thumbnail Image
    Item
    The effect of thermal insulation from autoclaved aerated concrete on the energy performance of a single-family house
    (Видавництво Львівської політехніки, 2023-02-28) Кіракевич, І. І.; Саницький, М. А.; Котур, Д. Р.; Kirakevych, I.; Sanytsky, M.; Kotur, D.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Досліджено вплив ізоляції з теплоізоляційного та довговічного матеріалу на основі автоклавного газобетону на енергетичні характеристики односімейного будинку. Широкий температурний діапазон застосування, достатньо високі показники міцності, простота монтажу – все це визначає доцільність використання системи ізоляційних панелей AEROC Energy як теплоізоляційного матеріалу. Моделювання параметрів теплоізоляційної оболонки житлових будівельних об’єктів дало змогу встановити показники зовнішніх огороджувальних конструкцій, які відповідають нормованому мінімальному рівню енергоефективності стандарту пасивного будівництва. Оптимальним вирішенням технології будівництва зовнішніх стін з автоклавного газобетону може бути укладання блоків конструкційно-теплоізоляційного бетону AEROC D 300 товщиною 300 мм з утепленням теплоізоляційним пористим бетоном AEROC Energy товщиною 200 мм, що забезпечує вимоги стандарту пасивних будинків до зовнішніх стін. Для типового односімейного будинку загальною площею 120 м2 з площею зовнішніх стін (непрозорої частини) 150 м 2 втрати теплоти через стіни становлять 1780 кВт*год, що на порядок менше порівняно із стіною з повнотілої керамічної цегли. За товщини утеплювача на рівні 200 мм забезпечуються мінімальні значення коефіцієнта теплопередачі (0,141 Вт/м 2К). Отримані теплоенергетичні показники відповідають стандарту пасивного будинку щодо термічного опору (Ro ≥ 6,7 м 2К/Вт) та коефіцієнту теплопередачі (Uo ≤ 0,15 Вт/м 2К) зовнішніх стін. Застосування теплоізоляційних панелей AEROC Energy D 150 на основі автоклавного газобетону марки за середньою густиною D 150 в комплексі з газобетонними блоками AEROC D 300 для спорудження огороджувальних конструкцій будівлі сприяє проєктуванню будинків з нульовим споживанням енергії, що є пріоритетним напрямком стратегії низьковуглецевого розвитку.
  • Thumbnail Image
    Item
    High strength steel fiber reinforced concrete for fortification protected structures
    (Видавництво Львівської політехніки, 2023-02-28) Саницький, М. А.; Кропивницька, Т. П.; Шийко, О. Я.; Бобецький, Ю. Б.; Волянюк, А. Б.; Sanytsky, M.; Kropyvnytska, T.; Shyiko, O.; Bobetskyy, Yu.; Volianiuk, A.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Представлено високоміцні сталефібробетони для швидкозбірних/швидкорозбірних фортифікаційних споруд із підвищеною стійкістю до ударних навантажень. Одержання високої міцності на розтяг при згині (fc, lf =7,4 МПа) та стиску (fcm =79,4 МПа) забезпечується шляхом поєднання фізичного підходу, що реалізується введенням полікарбоксилатного суперпластифікатора та дисперсного армування бетону сталевою фіброю. Встановлено, що за результатами випробувань сталефіброармований бетон можна віднести до високоміцного (клас міцності С 50/60) та швидкотверднучого (fcm2/fcm28 = 0,57), відповідно до ДСТУ EN 206:2018. Показано, що після дії швидкісного удару кулі калібру 7,62 мм на поверхні плит сталефіброармованого бетону магістральна тріщина фіксується після 3-х обстрілів (глибина проникнення кулі складає 2 см, а діаметр – 6,0–9,0 см). Проведено виготовлення експериментального зразка швидкозбірної/швидкорозбірної фортифікаційної споруди на основі розробленого сталефіброармованого бетону, який характеризувався класом міцності на стиск С40/50, міцністю на розтяг при згині – 6,7–7,0 МПа, маркою за водонепроникністю W14-W16; маркою за морозостійкістю F300. Встановлено, що розроблений сталефіброармований бетон дає змогу забезпечити збільшення міцності на стиск до класу С40/50–С50/60 порівняно з типовим бетоном класу міцності С32/40 (див. Будівництво інженерних споруд. Альбом № 1, 2. К.: ДП МОУ ЦПІ, 2015), що визначає можливість зменшення товщини стіни від 300 до 240 мм. Розроблення та впровадження швидкотверднучих високоміцних сталефіброармованих бетонів із підвищеним опором до різних видів силових впливів під час обстрілів фортифікаційних споруд артилерією та стрілецькою зброєю дасть змогу забезпечити захист особового складу підрозділів Збройних сил України.
  • Thumbnail Image
    Item
    Designing of alkaline activated cementing matrix of engineered cementitious composites
    (Видавництво Львівської політехніки, 2021-11-11) Марущак, У. Д.; Саницький, М. А.; Сидор, Н. І.; Маргаль, І. В.; Marushchak, Uliana; Sanytsky, Myroslav; Sydor, Nazar; Margal, Ihor; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Актуальною проблемою сучасного будівництва є розроблення високофункціональних матеріалів, які характеризуються високою міцністю на стиск та згин, довговічністю, експлуатаційними властивостями для забезпечення стійкості конструкцій. Одним з таких матеріалів є інженерні цементувальні композити (ЕСС) – особливий клас високофункціональних дисперсно-армованих цементних матеріалів. ECC характеризуються утворенням множинних тріщин за навантаження і деформаційних зміцнень під час розтягування. Для забезпечення підвищених властивостей матриця інженерних цементувальних композитів повинна бути запроектована з урахуванням принципів мікромеханіки, що передбачають оптимізацію компонентного складу та мікроструктури матеріалу з урахуванням взаємодії цементної матриці та волокон. Властивостей високоміцної цементної матриці досягають через отримання щільної упаковки частинок. Підвищення експлуатаційних властивостей ЕСС досягається частковою заміною цементу додатковими цементувальними матеріалами, зокрема золою-винесення. Дібрано співвідношення компонентів в’язкого і заповнювача та витрати суперпластифікатора методом ортогонально-центрального композиційного планування. Оптимальне відношення компонентів цемент: зола винесення: пісок становить 1:1:1, а витрата полікарбоксилатного суперпластифікатора – 0,75 % від маси в’язкого. Зниження негативного впливу підвищеної кількості золи-винесення забезпечується введенням метакаоліну та лужного активатора тверднення. Це забезпечує підвищення міцності цементної системи через 1 добу в 1,5 раза, отримання показників її міцності через 28 діб – 66,1 МПа та питомої міцності Rc2/Rc28 = 0,61, що створює можливість ефективного використання портландцементу, зменшення його витрати та зниження негативного впливу на навколишнє середовище.
  • Thumbnail Image
    Item
    Modification of cementitious matrix of rapid-hardening high-performance concretes
    (Видавництво Львівської політехніки, 2021-06-06) Кіракевич, І. І.; Саницький, М. А.; Шийко, О. Я.; Кагарлицький, Р. Р.; Kirakevych, Iryna; Sanytsky, Myroslav; Shyiko, Orest; Kagarlitskiy, Roman; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Наведено результати одержання швидкотверднучих високофункціональних бетонів на основі суперпластифікованих самоармованих цементуючих систем, що ґрунтуються на встановлених закономірностях структуроутворення і модифікування портландцементних композицій “портландцемент – активні мінеральні добавки – мікронаповнювачі – суперпластифікатори – прискорювачі тверднення”. Комплексом методів фізико-хімічного аналізу досліджено особливості процесів гідратації та тверднення суперпластифікованих самоармованих цементуючих систем. За результатами досліджень процесів структуроутворення суперпластифікованих самоармованих цементуючих систем встановлено, що утворення вторинного дрібнодисперсного етрингіту під час взаємодії активного оксиду алюмінію з кальцію гідроксидом та двоводним гіпсом у неклінкерній частині в’яжучого за рахунок ефекту “самоармування” забезпечує компенсацію усадки та приріст міцності цементуючої системи. Показано, що використання суперпластифікованих самоармованих цементуючих систем дає змогу впливати на технологічні властивості та кінетику структуроутворення і створювати міцну структуру бетону з покращеними будівельно-технічними властивостями. Застосування раціонально підібраних суперпластифікованих самоармованих цементуючих систем вирішує проблему одержання швидкотверднучих високофункціональних бетонів на основі самоущільнювальних сумішей з використанням безвібраційної технології монолітного бетонування. Створюється також можливість раннього навантаження конструкцій, збільшення оборотності опалубки та прискорення зведення монолітних конструкцій.
  • Thumbnail Image
    Item
    Self-Compacting Concretes, which Hardening at Different Temperature Conditions
    (Видавництво Львівської політехніки, 2020-03-23) Кіракевич, І. І.; Саницький, М. А.; Маргаль, І. В.; Kirakevych, Iryna; Sanytsky, Myroslav; Margal, Igor; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    У статті наведено особливості монолітного бетонування в різних температурних умовах та розглянуті актуальні питання технології приготування самоущільнювальних бетонів на основі суперпластифікованих цементуючих систем, що поєднує знання закономірностей структуроутворення і портландцементних композицій “портландцемент – активні мінеральні добавки – мікронаповнювачі – суперпластифікатор – прискорювачі тверднення” для пошуку раціональних рішень забезпеченості технологічних та експлуатаційних властивостей бетону в умовах зміни факторів його складу, технології й експлуатації. Встановлено фізико-хімічні особливості процесів гідратації і тверднення суперпластифікованих цементуючих систем, які завдяки направленому формуванню структури дозволяють вирішувати проблему одержання самоущільнювальних сумішей та бетонів з швидким наростанням міцності на їх основі. Проведено оптимізацію складів самоущільнювальних бетонів на основі суперпластифікованих цементуючих систем з високою ранньою міцністю, досліджено їхні показники якості та встановлено ефективність використання в різних температурних умовах. Результатами досліджень встановлено, що використання суперпластифікованих цементуючих систем дозволяє направлено керувати технологічними властивостями і кінетикою структуроутворення та створити міцну структуру бетону з покращеними будівельно-технічними властивостями при твердненні в різних температурних умовах. Розроблено технологічні рішення приготування суперпластифікованих цементуючих систем, які дозволяють вирішувати проблему одержання самоущільнювальних бетонів на їх основі з використанням безвібраційної технології бетонування. При цьому створюється можливість раннього навантаження конструкцій, скорочення виробничого циклу, збільшення оборотності опалубки та прискорення зведення монолітних будівель і споруд у різних температурних умовах.
  • Thumbnail Image
    Item
    Малоенерговмісні цементи з використанням відходів
    (Видавництво Національного університету “Львівська політехніка”, 2005-03-01) Саницький, М. А.; Марків, Т. Є.; Новицький, Ю. Л.; Кропивницька, Т. П.; Національний університет “Львівська політехніка”
    Показано, що в умовах загострення екологічних проблем, зменшення запасів якісної сировини для виробництва клінкеру перспективним напрямком розвитку цементної промисловості є ширше використання вторинних відходів та альтернативних джерел енергії, а також виробництво модифікованих композиційних цементів, які характеризуються покращаними будівельно-технічними властивостями, зокрема корозійною стійкістю в умовaх дії агресивних середовищ.
  • Thumbnail Image
    Item
    Підвищення водостійкості гіпсових в’яжучих
    (Видавництво Львівської політехніки, 2018-02-26) Новосад, П. В.; Саницький, М. А.; Позняк, О. Р.; Novosad, P.; Sanytsky, M.; Poznyak, O.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Проаналізовано літературні джерела щодо методів підвищення водостійкості гіпсових в’яжучих. Показано, що вони підвищують водостійкість гіпсових виробів завдяки зниженню розчинності гіпсу; зменшенню водоцементного відношення; просочуванню або обмазуванню виробів речовинами, що перешкоджають проникненню води. Мінеральні добавки цілеспрямовано використовують для модифікування складів на основі гіпсу для підвищення міцності, водостійкості, довговічності, хімічної стійкості отриманих матеріалів і виробів. Важливим технологічним методом, який збільшує швидкість проходження реакцій, є активація в’яжучого з підвищенням його питомої поверхні. У роботі подано результати дослідження впливу хімічних та мінеральних добавок на властивості гіпсового в’яжучого, зокрема на його водостійкість. Встановлено вплив золи винесення та портландцементу на властивості гіпсу. Показано, що найбільшого підвищення міцності та водостійкості гіпсового каменю досягають завдяки механоактивації золи винесення та портландцементу в складі гіпсоцементнопуцоланового в’яжучого. Приріст міцності ГЦПВ на основі активованих золи винесення та портландцементу становить 32 %, а коефіцієнта розм’якшення – 89 %.
  • Thumbnail Image
    Item
    Вплив підвищених температур на властивості наномодифікованих дисперсно-армованих бетонів
    (Видавництво Львівської політехніки, 2018-02-26) Марущак, У. Д.; Саницький, М. А.; Олевич, Ю. В.; Marushchak, U.; Sanytsky, M.; Olevych, Y.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Одним з інноваційних рішень покращення механічних властивостей бетонів в умовах впливу підвищених температур є використання портландцементних матеріалів, модифікованих на наномасштабному рівні. Досліджено вплив комплексного наномоди- фікування полікарбоксилатним суперпластифікатором, ультра- та нанодисперсними мінеральними добавками, а також дисперсного армування термостійкими базальто- вими волокнами на властивості бетонів на основі портландцементу, які через 1 та 7 діб тверднення піддавались дії підвищених температур 200, 400 і 600 °С. Визначено втрату маси, міцність на згин і стиск, пористість, усадку, водопоглинання бетонів після впливу підвищеної температури. Показано, що наномодифіковані бетони характеризуються високою ранньою та стандартною міцністю, підвищеною міцністю після впливу температур у діапазоні від 105 до 600 °С. Міцність на стиск наномодифікованого бетону через 1 і 7 діб тверднення в нормальних умовах і витримування при 400 °С зростає до 89,8 та 107,4 МПа відповідно, при цьому аналогічна міцність контрольного бетону становить відповідно 40,2 та 60,0 МПа. Дисперсне армування термічностійкими базальтовими волокнами забезпечує додаткове підвищення фізико-механічних показників наномодифікованого фібробетону.
  • Thumbnail Image
    Item
    Наномодифіковані швидкотверднучі бетони, армовані дисперсними волокнами
    (Видавництво Львівської політехніки, 2018-02-26) Марущак, У. Д.; Саницький, М. А.; Королько, С. В.; Marushchak, U.; Sanytsky, M.; Korolko, S.; Національний університет “Львівська політехніка”, кафедра будівельного виробництва; Академія сухопутних військ імені гетьмана Петра Сагайдачного, кафедра електромеханіки та електроніки; Lviv Polytechnic National University, Department of building production; Hetman Petro Sahaidachnyi National Army Academy, Department of Electromechanics and Electronics
    У статті показано, що одним із інноваційних напрямів одержання швидкотверднучих бетонів з покращеними експлуатаційними властивостями для фортифікаційних споруд, є застосування нанотехнологічних прийомів. Розглянуто проблему підвищення стійкості високоміцних бетонів до дії швидкісного удару шляхом гібридного армування їх структури ультрадисперсними мінеральними добавками та дисперсними волокнами. Представлено результати фізико-механічних та ударних випробувань швидкотверднучих фібробетонів.
  • Thumbnail Image
    Item
    Вплив лужних сполук на структуроутворення цементних композицій
    (Видавництво Національного університету “Львівська політехніка”, 2002) Саницький, М. А.; Соболь, Х. С.; Марущак, У. Д.; Шевчук, Г. Я.; Національний університет “Львівська політехніка”
    Вивчено вплив луговмісних сполук на раннє структуроутворення портландцементів. Встановлено, що додатки-модифікатори на основі тіосульфату та роданіду натрію, змінюючи склад рідкої фази, сприяють однорідному розподілу гідратів та збільшенню щільності цементного каменю. The influence of alkali containing compounds on portlandcement early structure formation was study. It has been established, that admixture-modificatore on the base of sodium tiosulphate and rodanide changes composition of liquid phase, promotes homogenous hydrate distribution and increasing of cement stone density.