Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    Technological features of restoration of rims of support rollers for tracked vehicles
    (Видавництво Львівської політехніки, 2023-02-28) Dzyubyk, Andrij; Dzyubyk, Liudmyla; Zinko, Yaroslav; Dzhaliuk, Oleh; Lviv Polytechnic National University
    The use of tracked (caterpillar) vehicles enables us to meet the requirements concerning harmless impact upon the environment, the considerable amounts of work to be fulfilled being saved. In particular, as compared to wheeled vehicles, there is less pressure upon the ground; there is also the opportunity to work in specific conditions of marshy, sandy, and low-bearing soils; stable performance in hard climatic conditions, etc. is also possible there. A necessary and important part of the tracked vehicle is its special suspension. Such a suspension contributes to smoother motion of the mechanism, it also cushions shocks, and ensures transmission of motion from the engine to the tracks. Independently of the design of the suspension, there are always several couples of support rollers. These rollers make up the intermediate link between the mover and the carrier frame, they transmit not only great weight but also the created loading, they guide the tractor’s caterpillars, etc. In the course of their work, the support rollers of tracked vehicles experience intensive wear and tear of the outer surface of their rims. As a result, changing them is necessary; dismounted ones are to be repaired. The use of restorative technology through overlaying (building up) by means of the electric arc is considered in this paper. This enables us to ensure cost savings and to repair support rollers of hardly loaded track vehicles. It is also possible to increase their serviceability by optimizing the overlayed metal; in particular, by increasing the hardness of the overlayed layer and increasing its resistance against impact and abrasive wear. The weldability of the main metal of a support roller has been analyzed. It is shown that the use of high-carbon material complicates the conditions for overlaying the outer rim. It is necessary to use pre-heating to high temperatures. This reduces the tendency of the material to form hardening structures and cracks after the overlaying. Investigations of peculiarities of overlaying a cylindrical surface of the rim of a tractor’s roller have been conducted. In particular, the limit values of the length of a weld pool depending on the diameter (value of wear) of the overlayed rim of a roller have been determined. It is shown that it is necessary to carry out the displacement of the arc from the zenith. This ensures the necessary formation of the weld-pool and the absence of spreading of the metal overlayed on the rim. The determination of the value of heat input of overlaying a roller has been carried out, the heat input is considered as a function of parameters of the electrode wire. Verification calculation of the obtained values of specific power for the permissible length of the weld-pool has been conducted. Concretization of the obtained results was carried out by taking into account the optimal range and permissible rate of cooling in overlaying the main material of a support roller. According to special nomograms, the dependence between the rate of cooling and the heat input of overlaying has been established. Especially, there were investigated the temperature conditions during overlaying the weld beads. It is shown that heating the roller takes place at the expense of neighboring weld beads. It is established that in overlaying at the determined values of heat input (per unit length) there can be achieved the temperature of auto heating is sufficient for the pre-heating of a roller.
  • Thumbnail Image
    Item
    Strengthening and reconstruction of drilling core pipe for engineering and geological exploration
    (Видавництво Львівської політехніки, 2022-02-22) Dzyubyk, Andrij; Dzyubyk, Liudmyla; Shpak, Bohdan; Lviv Polytechnic National University
    Currently, there is a tendency to increase the depth of gaseous and liquid fossils extraction. Therefore, prospecting and developing new deposits is promising. There is also a need to create new freshwater sources and implement relevant geological work based on this need. It is essential to have information about the characteristics of the explored slabs and the geology of the fields in general. Implementation of engineering and geological core drilling exploration is the most acceptable and provides the necessary data. Here, the peculiarities of the technological schemes of the process implementation make it possible to obtain separate sections of structures at a depth of the drilling equipment. It is essential to use traditional equipment, recommended for decades and provides the necessary results [1–3]. In the drilling process, you can achieve different diameters and depths of wells execution, obtain fossil samples etc. Engineering and geological exploration drilling is now taking on increased use in various industries [3]. Therefore, the problem of providing highquality drilling tools, the stability of their operating characteristics, and the possibility of usage in different conditions is an urgent need today. Modern drilling problems determine the usage of components of the core set with the appropriate physical and mechanical characteristics. Especially it relates to elements close to the drilling tool and the place of fossil; destruction – drill pipe. It is installed immediately after the crown core drill and receives almost the same loads and effects during working [1–3]. Conditions for the implementation of the process of core drilling are characterized primarily by the effect on the elements of the significant axial and twisted core set forces. There is the influence of the corrosive and active environment of the fossil in the washing and lubricating liquids well, etc. High temperatures are also observed at the drilling sites [3], which negatively affect the working tool and speed up its operation. As a result, there is an intensive shock, and abrasive core pipe wear and operation indicators change their constructive size. As a result, it is necessary to replace the operated drill string periodically. Considering modern technical and economic factors, it may be decided to repair a pipe to its original size in many cases. There are tasks for providing the appropriate characteristics of the core pipe surface. It is possible to model such properties of the new surface that functionally the best meet the conditions of the drilling process of a given geological formation. The peculiarities of applying the therapeutic layer on the surface of the core pipe are investigated in work. The experience shows that using electric arc surfacing under the flux layer is expedient. This provides the necessary adhesion of the applied layer and promotes obtaining resistance to the operation surface of the core pipe. At the same time, there is high-quality protection and the possibility of additional alloying through the flux-slaggy welding bath. Using electrode powder type wires creates conditions for flexibility to achieve the established characteristics of functional layers [4–6]. The filling flux, located in the cross-section of the electrode wire, can be easily changed by chemical composition. At the same time, it is possible to make relatively small parties of a wire with the set characteristics. The technological scheme justification about the core pipe surfacing is performed. It provides the previous displacement of the electrode butt size from the zenith of the core pipe to prevent the welding bath from spreading. The structural pipe size , the requirements for residual deformations, and the conditions of shapping the welded layer show the practicality of welding on a helix.
  • Thumbnail Image
    Item
    Comprehensive approach to training specialists in the area of engineering education
    (Lviv Politechnic Publishing House, 2020) Dzyubyk, Andrij; Nazar, Ihor; Dzyubyk, Liudmyla; Mykhailinchyk, Ihor; Kulykovets, Yurii; Lviv Polytechnic National University
    The article outlines advantages of applying a comprehensive approach to training specialists in the area of engineering education. Modern approaches to project management in production are analyzed, using the known experience of the European countries and the world. The basic tools of project management that are applied at all stages of implementation of engineering projects are described. Based on the analysis of known project management techniques, it has been established that effective engineering project management is possible by way of involving future professionals in the stages from developing the project idea, goals and objectives to obtaining the desired results and achieving the set goals. It is important to motivate students to think critically and encourage teamwork on a project. In the present article, the authors suggest to consider the process of training specialists in civil and industrial engineering through the prism of the next four phases of the project. The first phase is to prepare the project with elements of structuring. It addresses the issues of the project goals, tasks and results, risk management, project documentation, budgeting, formation and management of the project team. The second phase is project management, which includes drafting a project structural plan (PSP) and work packages, scheduling task completion, resources and costs planning, cost estimation, and time management tools. The third phase is the implementation of the project with control and monitoring. Here, future specialists are working on issues of the project control, financial monitoring, monitoring of resources, communication and interaction between teams, conflict management, change management and keeping necessary documentation. Completion of the project is the fourth stage, which is an integral element of project management. It provides for financial and analytical reporting, documentation for retention of experience, knowledge management, certification and feedback to the project team. Based on teaching practice and considerable practical experience in industry, the authors found out that the process of pedagogical training of future competitive specialists in various areas of civil and industrial engineering should be accompanied by practical and theoretical materials on modern tools for a holistic and integrated approach to project management. At the same time, taking account of the dynamics of political and economic changes in Ukraine and integration with international standards, it is necessary to take a skilled approach to the issue of production change management in the project activity. The global experience reveals that only truly successful organizations anticipate and initiate changes. Thus, the organizations themselves, their goals, objectives and tools are undergoing changes. And the issue of change management itself is the subject for further research by the authors.
  • Thumbnail Image
    Item
    Corrosion-mechanical resistance of arc-sprayed coatings made from cored powders
    (Lviv Politechnic Publishing House, 2018-01-29) Student, Mykhaylo; Veselivska, Galyna; Gvozdeckii, Volodymyr; Golovchuk, Myron; Dzyubyk, Liudmyla; Sirak, Yaryna; Karpenko Physico-Mechanical institute of the NAS of Ukraine
    Result of investigations of resistance against corrosion and mechanical resistance of obtained by means of arc-spray metallization (with the use of cored wires) coatings are presented. The cored wires (CWs) enable us to regulate the chemical composition and, consequently, properties of the deposited coating in a wide range. With this, the characteristic feature is its high structural heterogeneity, which is caused by rapidness of the processes of melting of components of the CW in the arc; this promotes incompleteness of dissolving of change materials in the melt of the metallic shell, and thus, there forms of heterogeneous as to its chemical components melt. The determination of the first-type residual stresses in coatings was conducted according to the developed for bimetal rings technique. The tensile strength (cohesion) of ASC was determined with the use of an experimental set-up which consisted of two pipes. Electrochemical investigations were conducted in an electrochemical cell in potentiodynamic regime with the use of hard-ware-software complex which was designed for automation of investigations with the help of CBЛ-1Б-М voltamperometric system. The rate of corrosion was determined by means of extrapolation of linear segments of polarization curves to the potential of corrosion or on the basis of segments which corresponded to passive state. In order to develop experimental sets of CWs, there additionally were investigated some materials with different charge components (chromium, ferro-chromium, boron carbide, ferrochromium- boron, ferro-silicium, ferro-manganise, self-fluxing alloy) (Table 1). High hardness is characteristic of coatings made from CWs. Such a high hardness is due to 3 % of boron in the coating. However, the cohesive strength of such coating is low and does not exceed 100 MPa. This is caused by high tensile residual first-type stresses, which can lead to emergence of crack during machining. In order to reduce the level of residual stresses, it is necessary to preliminarily heat machine parts to 150–2000 °C. Electrochemical parameters and the character of polarization curves, despite some changes in chemical composition of coatings, do not essentially differ. With this, the potential of corrosion shifts towards the segment of negative values, and the corrosion current of such coatings are within one decimal order of their values. Open porosity, that is an important factor, which influences the corrosion behaviour of the material and its matrix is a characteristic feature of all the coatings. The corrosive medium, because of the presence of porosity, penetrates through such pores down to the matrix and creates conditions for proceeding of under-coating corrosion. In this case, products of corrosion accumulate at the coating – matrix interface, and they cause the separation of the coating from the basis (phenomena of ply-separation). The presence of chromium, ferro-chromium, ferro-silicon, and ferro-manganese in the charge for CW 90Cr17BMnSi leads to minimal chemical heterogeneity of the coating, and consequently to high corrosion resistance of the coating. The presence of ferro-chromium-boron, chromium, and self-fluxing alloying composition in the charge for CW 20Cr16B3Ni2SiAl ensures high content of chromium in the coating, low coefficient of microheterogeneity, and high resistance against corrosion.
  • Thumbnail Image
    Item
    Optimization of conditions of electroslag welding of bandings of rotary units
    (Publishing House of Lviv Polytechnic National University, 2016) Dzyubyk, Andrii; Dzyubyk, Liudmyla; Zinko, Yaroslav; Biruk, Stanislav
    The design of banding shells of rotary units is analyzed. It is shown that combined welding and cast manufacturing of bandings is used in the case of large structural sizes. The basic materials (30, 35, 25 HSL and 30 HML), being used in this process, are characterized by the tendency of forming of hardening structures due to the thermal cycle of welding. As a result of this, the cracks in the heat-effected zone, which lead to the destruction of the connection under the influence of welding residual stresses. The analysis of literature sources has shown that the usage of electroslag welding is perspective during the manufacturing and welding of operational cracks. Thus it is important to define the correct parameters of the welding conditions. In the case of electroslag method they are different from the arc methods and are characterized by the larger amount. In the paper the technological process of welding of banding (tread) ring with the external diameter of 4600 mm, wall thickness of 300 mm and wideness of 500 mm, which is made of steel 35. The defining of regime parameters is made using the following recommended techniques: taking into account the chemical composition of the basic metal; according to the nomogram depending on the ratio of the thickness of the metal to the number of electrode wires; using the calculation (design) method according to the conditions of electroslag welding of the banding. Taking into account the tendency of the steel 35 to cracks forming (cracking), the evaluation of the structure and phase composition and mechanical properties of metal of heat-effected zone of the weld. In order to define the microstructure, the cooling rate of the metal in the range of structural transformations was determined and the diagram of anisothermal decomposition of austenite was used. The technique of determination of the metal cooling rate as a result of the influence of thermal cycle of electroslag welding is proposed in the paper. It is based on the usage of special nomograms which characterize the specific features of the process being studied. The cooling rate equals w= 0.1876 degrees per second when using the developed process parameters. Also the investigation of temperature distribution in the cross-section of the weld has been carried out. It is shown that there are no significant deviations of temperature when using the proposed regime parameters. This influences the reduction of the level of residual stresses along the thickness of the weld. The analysis of the diagram of austenite transformation has shown that the structure of the steel 35 in the initial state is ferrite one with the mixture of pearlite and bainite. As a result of welding carrying out the structure will have a similar composition with slightly larger content of perlite and bainite. It was defined that their content in the heat-effected zone is as follows: 39 % for ferrite, 61 % for the mixture of perlite and bainite. At the same time, the investigated technology of electroslag process ensures the slow heating and cooling of the areas around the weld and obtaining of satisfactory mechanical properties of the metal. Therefore, the combined usage of existent techniques of regime parameters determination is expedient. Also it is necessary to carry out the verification of physical and chemical properties of the metal of heat-effected zone in order to prevent the formation of hardening structures.