Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Формування та дослідження низьковольтних модулів акумуляторних батарей та суперконденсаторів для автономних систем електричного живленнях
    (Видавництво Львівської політехніки, 2022-02-22) Щур, І. З.; Біляковський, І. Є.; Харчишин, Б. М.; Shchur, I.; Biliakovskyi, I.; Kharchyshyn, B.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    У сучасних автономних системах електричного живлення, зокрема для електричних транспортних засобів, часто застосовують акумуляторні батареї (АБ) як джерела енергії та суперконденсаторні (СК) модулі як джерела потужності. Щоб забезпечити необхідний рівень бортової напруги, ці засоби містять велику кількість низьковольтних комірок, роботу яких супроводжують непрості електронні системи енергетичного менеджменту (СЕМ). Спрощення роботи таких систем, зниження їх вартості, а також забезпечення низки інших переваг енергетично-тягових систем транспортних засобів можна досягти, застосувавши модульний підхід як до побудови двигунів із відповідними системами керування, так і до їх електричного живлення. У статті викладено результати формування та дослідження низьковольтних (12–16 В) модулів Li-Ion АБ та СК-модулів для побудови модульних систем електричного живлення транспортних засобів. Роботу розпочато із вимірювання основних параметрів – ємності та внутрішнього опору – для достатньо великої кількості однотипних Li-Ion та СК-комірок. У результаті подальшого відбору (скринінгу) комірок із подібними параметрами створено відповідні низьковольтні модулі. Їх функціонування досліджували в зарядно-розрядних циклах зі сталими значеннями струму, порівнюючи напруги на послідовно ввімкнених елементах чи групах паралельно увімкнених елементів як із використанням спеціальних електронних плат СЕМ, так і без них, а також для випадків цілеспрямованого скринінгу комірок із подібними параметрами та довільного їх вибору. Дослідження низьковольтних модулів Li-Ion АБ показали, що у разі застосування спеціальної плати СЕМ підбирати параметри елементів для їх паралельно-послідовного з’єднання не потрібно. Проте скринінг Li-Ion комірок за схожими основними параметрами у низьковольтних модулях дає подібні результати навіть без застосування СЕМ. У СК-модулях функцію пасивного балансування зарядів СК-комірок добре виконує проста захисна електронна плата, проте лише за повного заряджання комірок. Для активного балансування необхідні складніші й дорожчі СЕМ. Однак у випадку низьковольтного СК-модуля із відібраними СК-комірками з подібними параметрами відбувається самовирівнювання напруг шести послідовно з’єднаних СК-груп із двома паралельно з’єднаними СК-комірками в кожній групі. Отже, скринінг енергетичних комірок є дієвим підходом для створення простіших та дешевших низьковольтних Li-Ion АБ та СК-модулів.
  • Thumbnail Image
    Item
    Основні конструктивні співвідношення лінійного генератора імпульсної дії
    (Видавництво Львівської політехніки, 2020-01-20) Харчишин, Б. М.; Хай, М. В.; Бойчук, Б. Г.; Радович, М. М.; Kharchyshyn, B.; Khaj, M.; Boichuk, B.; Radovych, M.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Проаналізовано види втраченої при артилерійському пострілі енергії з метою визначення можливості її повторного використання. Пропонується використати кінетичну енергію руху ствола і противідкотних пристроїв для генерування та акумулювання у вигляді електричної енергії для підвищення енергетичної незалежності підрозділу при виконанні бойової задачі. Для цієї мети застосовано лінійний генератор імпульсної дії з гладким якорем магнітоелектричного збудження, структуру активної частини якого досліджено. Застосовано принципи поділу структури електромеханічного перетворювача до лінійного генератора імпульсної дії, що дозволило оптимально використовувати активні матеріали. Використано твердження, що при ненасиченому магнітопроводі магніторушійна сила постійного магніту прикладена в основному до немагнітного проміжку, тому за основний критерій проектування взято рівність висоти магніту величині, що складається з товщини обмоткового шару та технологічного проміжку між магнітом та Обмоткою, а товщина активної зони дорівнює сумарній товщині спинок магнітопроводів статора і повзуна. Встановлено оптимальні значення величини полюсної поділки для заданих значень внутрішнього та зовнішнього габаритного діаметрів проектованого генератора. Наведено основні співвідношення для визначення оптимальних значень ширини та висоти магніту, товщини спинок магнітопроводу статора та повзуна з урахуванням коефіцієнтів розсіяння та приведення площі магнітопроводу до середнього його діаметра, який враховує зменшення площі магнітопроводу через зменшення діаметра порівняно з внутрішнім діаметром магніту. Подано співвідношення для визначення діаметра розточки повзуна.