Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Influence of Throttling and Nozzles Switching Sequence on Indicator of Water Distribution Uniformity in Cooling Tower Model
    (Видавництво Львівської політехніки, 2023-02-28) Орел, Вадим; Мацієвська, Оксана; Піцишин, Богдан; Ценюх, Максим; Orel, Vadym; Matsiyevska, Oksana; Pitsyshyn, Bohdan; Tseniukh, Maksym; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Проаналізовано фактори, які призводять до нерівномірності розподілу води в градирнях. До них належать недосконалість конструкції трубопроводів і сопел водорозподільного пристрою градирень. Попередні дослідження, виконані на моделі водорозподільного пристрою баштової градирні системи циркуляційного водопостачання Рівненської АЕС, виявили нерівномірність роздавання води на соплах. Моделюванням неодночасності спрацьовування сопел встановлено, що витрати сопла, яке спрацьовує першим, найбільші. Тому для досягнення допустимої рівномірності роздавання води здійснювали дроселювання цього сопла за допомогою дросельної діафрагми. Показано, що таке дроселювання ефективне навіть за наявності гідродинамічної кавітації за відносних діаметрів діафрагми 0,449–0,624. У разі спрацьовування чотирьох модельних сопел одного за одним витрата першого з них зменшується як без дроселювання, так і за дроселювання. Збільшення кількості сопел, які працюють, до чотирьох істотно не впливає на витрату першого.
  • Thumbnail Image
    Item
    Hydrodynamical instability of newtonian flow before an axisymmetric sudden contraction
    (Видавництво Львівської політехніки, 2021-11-11) Орел, В. І.; Піцишин, Б. С.; Коник, Т. З.; Orel, Vadym; Pitsyshyn, Bohdan; Konyk, Tetiana; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Заходи зі зменшення втрат енергії в системах трубопровідного транспорту необхідно впроваджувати вже на етапі проектування. Зокрема це стосується й місцевих гідравлічних опорів трубопроводів. Досліджено розміри вирового поясу перед симетричним раптовим звуженням круглої труби за течії ньютонівської рідини. Розглянуто ступені звуження потоку 0,250 та 0,500. Адже заходи, спрямовані на зменшення втрат енергії на раптовому звуженні круглої труби, мають бути ефективними за ступенів звуження потоку не менших ніж 0,250. Розміри вирового поясу мають екстремальну залежність з максимумом під час переходу ламінарного режиму руху рідини в турбулентний. Зі збільшенням значень критерію Рейнольдса за ламінарного режиму ці розміри зростають, а за турбулентного режиму – зменшуються. У першому випадку точка відриву потоку зміщується вверх за течією від площини зміни діаметрів, що узгоджується з даними чисельного моделювання, наведеними в літературі; у другому випадку – донизу за течією. В обох випадках розміри вирового поясу є пропорційними до критерію Рейнольдса. Описана поведінка є аналогічною як для довжини зони повторного приєднання потоку ньютонівської рідини після раптового розширення труби. Перехідна зона між ламінарним і турбулентним режимами руху рідини є в межах від 3000 до 5300 та 750–1300 для критерію Рейнольдса, визначеного за діаметром більшої труби та уступом відповідно. Це узгоджується з наведеними в літературі даними. Висота вирового поясу перед раптовим звуженням круглої труби є меншою за висоту уступу. Відбувається неповний відрив потоку рідин перед перерізом зміни діаметрів.
  • Thumbnail Image
    Item
    Elimination of Flow Rate Restriction for System of Storm Water Sewage with the Help of Drag-reducing Polymers
    (Видавництво Львівської політехніки, 2020-03-23) Орел, В. І.; Піцишин, Б. С.; Ворон, Я. І.; Orel, Vadym; Pitsyshyn, Bohdan; Voron, Yaryna; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Розглянуто можливі причини затоплення територій дощовими водами за надзвичайних ситуацій та методи управління дощовим стоком. Обґрунтовано уникнення затоплення місцевості вживанням заходів, які усувають обмеження дощової каналізаційної мережі за витратою. Використання гідродинамічно активних полімерів (ГДАП), які зменшують гідравлічне тертя в трубопроводах, запропоновано розглядати як метод управління дощовим стоком зменшенням накопичення зливових вод на поверхні водозбору. ГДАП збільшують об’ємну витрату трубопроводів і віртуально збільшують їхню довжину та діаметр. Стаття присвячена збільшенню пропускної здатності дощових каналізаційних мереж за допомогою регулювального резервуара для зливової води та ГДАП. Запропоновано використовувати ГДАП у вигляді водного розчину та вводити безпосередньо в дощову каналізаційну мережу крізь дощоприймач чи люк колодязя. Застосовуючи шестеренний насос як дозатор, введення проводять із цистерни, в якій пристрій для приготування розчину з вихідної сировини ГДАП має ексцентрично розташований гладкий робочий орган. Вказані пристрої не призводять до деструкції молекул ГДАП, що передчасно не зменшує ефекту від використання останніх. Управління дощовим стоком показано на прикладі квадратного в плані басейну стоку при точковій схемі водовідведення з використанням регулювального резервуара проточного типу, встановленого на початку дощової каналізаційної мережі діаметром 300 мм та довжиною 1922,5 м, та використання водного розчину поліакриламіду концентрацією 500 ррм (0,0005 кг/л). Математичне моделювання роботи системи дощової каналізації показало, що збирати дощовий стік за зазначених вище умов можна з басейну більшою площею, ніж без використання ГДАП за рахунок збільшення витрати поверхневого стоку та витрати відтоку з регулювального резервуара.