Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Вибір оптимальної структури прихованих шарів штучної нейронної мережі для аналізу ефективності енергоспоживання
    (Видавництво Львівської політехніки, 2021-10-10) Казарян, А. Г.; Теслюк, В. М.; Казимира, І. Я.; Kazarian, A. G.; Teslyuk, V. M.; Kazymyra, I. Ya.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Розроблено метод вибору оптимальної структури прихованих шарів штучної нейронної мережі (ШНМ), ідеєю якого є практичне застосування декількох внутрішніх структур ШНМ і розрахунку похибки роботи кожної структури прихованих шарів із використанням ідентичних наборів даних для навчання ШНМ, що виключає вплив специфіки даних у навчальній вибірці на результати роботи алгоритму. Метод ґрунтується на почерговому порівнянні очікуваних результуючих значень і реальних результатів роботи штучних нейронних мереж прямого поширення із різною кількістю внутрішніх шарів, а також різною кількістю нейронів на кожному шарі. Метод дає змогу реалізувати пошук оптимальної внутрішньої структури ШНМ для застосування у сфері розроблення систем “розумного” будинку і розрахунку оптимального рівня енергоспоживання відповідно до поточних умов, таких як температура у приміщеннях, присутність людей та час доби. Застосування методу на початкових стадіях розроблення систем “розумного” будинку дає змогу зменшити часові витрати на вибір ефективної структури ШНМ і приділити більше уваги взаємозв’язкам між вхідними та вихідними даними, а також таким важливим параметрам процесу навчання ШНМ, як кількість ітерацій тренування, мінімальна помилка тренування тощо. Розроблено програмне забезпечення, що дає змогу провести процеси навчання, випробування та отримати вихідні результати роботи алгоритму штучної нейронної мережі, такі як очікуване значення енергоспоживання та час роботи кожного окремого електроприладу. Виявлено недолік використаного підходу знаходження оптимальної внутрішньої структури ШНМ, який полягає у тому, що кожна наступна структура створюється на основі найефективнішої з попередньо створених структур, без аналізу інших структур, що показали гірші результати за меншої кількості прихованих шарів. З’ясовано, що для удосконалення розв’язання цієї задачі необхідно створити механізм, який ґрунтуватиметься на аналізі вхідних даних, вихідних даних, аналізуватиме внутрішні взаємозв’язки між параметрами та оптимізуватиме структуру мережі на кожному етапі за допомогою визначених логічних правил відповідно до результатів, отриманих на попередньому кроці. Встановлено, що вирішення поставленої проблеми є задачею нелінійного програмування, яку можна розв’язати, розвиваючи надалі це дослідження.
  • Thumbnail Image
    Item
    Зменшення кількості хибних викликів під час розв’язання задачі детектування полум’я у відеопотоці з використанням глибоких згорткових нейронних мереж
    (Видавництво Львівської політехніки, 2017-03-28) Максимів, О.; Рак, Т.; Пелешко, Д.; Львівський державний університет безпеки життєдіяльності; Національний університет “Львівська політехніка”
    Розроблено новий підхід до детектування полум’я на зображеннях, який ґрунтується на використанні згорткових нейронних мереж. Запропоновано структуру реалізації каскадного підходу до детектування вогню, яка забезпечує покращену ефективність розпізнавання на зображеннях з низькою роздільною здатністю, та об’єктів, які можуть візуально нагадувати полум’я. Проведено експерименти з дослідження запропонованого методу порівняно з сучасним методом детектування об’єктів Faster R-CNN. У результаті проведених експериментів було виявлено покращення показника ефективності в середньому на 20%.
  • Thumbnail Image
    Item
    До питання про прискорений вибір значення коефіцієнта Кросинговера в задачах передискретизації зображень
    (Видавництво Львівської політехніки, 2017-03-28) Пелешко, Д.; Винокурова, О.; Рак, Т.; Ізонін, І.; Пелешко, М.; Михайлюк, С.; Національний університет “Львівська політехніка”; Харківський національний університет радіоелектроніки; Львівський державний університет безпеки життєдіяльності
    Розроблено новий метод прискореного автоматичного визначення значення коефіцієнта операції кросинговера у задачах попереднього опрацювання зображень з використанням матричних операторів дивергенції. Експериментальні дослідження показують високу стійкість методу до обробки зображень із флуктуаційною функцією інтенсивності. Порівняння результатів роботи за розробленим методом з результатами за існуючим показало прискорення автоматичного вибору коефіцієнта кросинговеру, що значно зменшує кількість необхідних обчислювальних ресурсів для його роботи. Це зумовлює можливість його ефективного застосування під час обробки великорозмірних зображень.
  • Thumbnail Image
    Item
    Дослідження та аналіз методів забезпечення надвисокої роздільної здатності зображень на основі машинного навчання
    (Видавництво Львівської політехніки, 2017-03-28) Ізонін, І.; Національний університет “Львівська політехніка”
    Досліджено методи забезпечення надвисокої роздільної здатності зображень на основі машинного навчання. Проаналізовано роботу різних груп цих методів, подано їхні переваги та недоліки. На основі проведених практичних експериментів здійснено порівняльний аналіз (за критерієм PSNR) методів забезпечення надвисокої роздільної здатності у випадку одного вхідного зображення з різних класів. Експериментально встановлено, що найкращі результати отримано при використанні методу на основі конволюційної нейронної мережі. Незважаючи на часо- та ресурсозатратну процедуру навчання за цим методом, його навчальну модель можна використовувати для обробки зображень різних класів.