Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Researching the influence of the mass distribution inhomogeneity of the ellipsoidal planet’s interior on its stokes constants
    (Lviv Polytechnic Publishing House, 2019-06-26) Фис, М. М.; Бридун, А. М.; Юрків, М. І.; Fys, M. M.; Brydun, A. M.; Yurkiv, M. I.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Параметри гравітаційного поля Землі ( , , n k С n,k S ) визначаються її фігурою та внутрішнім наповненням (розподілом мас), які по-різному впливають на їх формування. Подаючи функцію розподілу мас надр планети у вигляді біортогональних рядів, встановимо зображення стоксових постійних , , n k С n,k S через коефіцієнти mnk b розкладу потенціалу планети та лінійні комбінації геометричних характеристик еліпсоїда. На основі отриманих формул вивчити можливий вплив неоднорідності функції розподілу мас надр Землі та подання її фігури еліпсоїдом обертання на значення величин стоксових постійних та дослідити вклад радіального розподілу густини мас Землі у значення цих постійних. Методика. Подання функції густини надр планети у вигляді суми многочленів Лежандра трьох змінних і апроксимація її поверхні еліпсоїдом, а також представлення внутрішніх кульових функцій у прямокутній системі координат, роблять можливим інтегрування виразів для стоксових постійних , , n k С n,k S та отримання співвідношення між цими величинами різних порядків і лінійною комбінацією коефіцієнтів розкладу pqs b потенціалу планети й геометричних параметрів еліпсоїда a,b,g . Числові дані, отримані за виведеними спів- відношеннями, і побудовані графіки дають можливість провести аналіз впливу неоднорідності розподілу мас надр планети еліпсоїдальної форми на значення стоксових постійних та визначити інтервали максимального впливу. Результати. Отримано загальні співвідношення між коефіцієнтами розкладу mnk b функції розподілу та інтегралами від кульових функцій по еліпсоїдальній поверхні, які визначають стоксові постійні заданого порядку. При цьому стоксові постійні -го порядку виражаються через величини Сn,k , Sn,k нижчих порядків. Проведені обчислення дають загальну картину формування значень стоксових постійних, з якої чітко випливає висновок про невеликий вплив еліпсоїдальної форми планети на їх величину та про тривимірність гравітаційного поля Землі як результату неоднорідного за всіма координатами розподілу мас її надр. Підтверджена залежність значень величини С2m,0 від геометричного стиснення двохосьового земного еліпсоїда постійної густини. Наукова новизна. Визначені формули зв’язку між стоксовими постійними різних порядків та лінійними комбінаціями параметрів еліпсоїда a ,b ,g . Проведені обчислення та перевірка отриманих співвідношень для різних наборів коефіцієнтів bpqs розкладу потенціалу дають можливість зробити висновок про переважний вклад тривимірності гравітаційного поля Землі в значення стоксових постійних, за винятком С2,0 , а побудовані графіки визначають інтервали її максимального вкладу в розподіл мас за глибиною. Практична значущість. Отримані залежності дозволяють перевіряти степінь наближення побудованої моделі густини еліпсоїдальної планети шляхом порівняння обчислених за нею та взятих зі спостережень стоксових постійних. Крім цього, з’являється можливість оптимального узгодження геометричних характеристик еліпсоїда планети з її гравітаційним полем.
  • Thumbnail Image
    Item
    Elaboration of equipotential surfaces of planets using biorthogonal expansions
    (Видавництво Львівської політехніки, 2016) Fys, С. M.; Sohor, A.; Yurkiv, M.
    Purpose. Using known and fixed Earth potential, presented asthe biorthogonal expansion, to culculate the geoid surface, which describes the actual shape of the planet. The external gravitational field is generally described by the series of spherical functions. Since the geoid is determined with the help of such functions, a question arises converning the identity to define the shape, moreover its several points does not belong to the region of convergence. Methodology and results. We consider representation of potential by convergent series everywhere, which makes it possible to find the geoid without specifying the location of points on the surface, although the geoid heights calculation is carried out by various relations. According to the known function of the mass distribution of the Earth, represented by the second degree polynomial, internal and external potential of elliptical planet are defined and the equipotential surfaces are found. Calculated values via these formulas and their degree of coincidence was analyzed. Defined in two ways surfaces do not coincide with each other because the difference in the values of the radius-vector amouts up to ten meters. So, when applying biorthogonal expansions of higher orders in constructing equipotential surfaces based on information about the external gravitational field it is necessary to take into account characteristics of expansion. Originality. Method of determining the shape of the Earth using the biorthogonal expansions of mass distribution function is proposed. This representation is characterized by a convergence for considered series and gives the opportunity to build digital models of the geoid (volumetric or as an isolines map). Practical significance. The results of numerical experiments, described in the article, led to the conclusion about the possibility of determining the equipotential surfaces that adequately describe the physical surface of the planet not only of the second but higher orders using biorthogonal expansions only with additional investigations. Calculation of geoid heights with high accuracy opens the way to observe many regional and local geodynamic phenomena, such as the movement of tectonic plates, and high accuracy leveling using GPS technology can solve a number of geodetic problems. Мета. За відомим фіксованим потенціалом Землі, поданим за допомогою біортогонального розкладу, як одного з варіантів його представлення, знайти поверхню геоїда, яка описує реальну фігуру планети. Зовнішнє гравітаційне поле описується, як правило, рядами за кульовими функціями. Оскільки геоїд визначають з їх використанням, тому виникає питання ідентичності визначення фігури, тим паче, що частина її точок не належить області збіжності. Методика і результати роботи. У роботі розглянуто представлення потенціалу всюди збіжними рядами, що дає можливість знаходити геоїд без уточнення розміщення точок на його поверхні, хоча обчислення висот геоїда здійснюється за різними співвідношеннями. За відомою функцією розподілу мас надр Землі, представленою многочленом другого степеня, визначено внутрішній та зовнішній потенціал еліптичної планети, за яким знайдено еквіпотенціальні поверхні. Проаналізовано обчислені значення за цими формулами та степінь їх співпадання. Визначені двома способами поверхні рівня не співпадають між собою, бо різниця в значеннях радіус-векторів досягає десятків метрів. Тому застосувати біортогональні розклади вищих степенів під час побудови еквіпотенціальних поверхонь на основі інформації про зовнішнє гравітаційне поле необхідно з урахуванням особливостей розкладу. Наукова новизна. Запропонований метод визначення фігури Землі з використанням біортогональних розкладів функції розподілу мас. Таке представлення характеризується збіжністю для розглянутих рядів та дає можливість будувати цифрові моделі геоїда (об’ємні, або у вигляді карт ізоліній). Практична значущість. Результати числових експериментів, наведених у статті, дали змогу зробити висновок про можливість визначення еквіпотенціальних поверхонь, які адекватно описують фізичну поверхню планети, не тільки другого, а і вищих порядків з використанням біортогональних розкладів лише за додаткових досліджень. Обчислення висот геоїда з високою точністю відкриває шлях до дослідження багатьох регіональних та локальних геодинамічних явищ, наприклад, руху тектонічних плит, а високоточне нівелювання за допомогою GPS-технологій дає змогу розв’язувати низку геодезичних задач.