Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    Determination of precipitable water vapour, from the data of aerological and GNSS measurements at european and tropical stations
    (Видавництво Львівської політехніки, 2019-02-28) Пазяк, М. В.; Paziak, M.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
  • Thumbnail Image
    Item
    Особливості вертикального розподілу вологої складової зенітної тропосферної затримки в середніх і тропічних широтах
    (Видавництво Львівської політехніки, 2018-08-21) Пазяк, М.; Заблоцький, Ф.; Paziak, M.; Zablotskyi, F.; Пазяк, М.; Заблоцкий, Ф.; Національний університет “Львівська політехніка”
    Досліджено вертикальний розподіл вологої скла- дової зенітної тропосферної затримки (ЗТЗ) за даними аерологічних станцій у середніх і тропічних широтах та виконано порівняння цих величин з відповідними значеннями вологих складових ЗТЗ, отриманих з ГНСС-спостережень. До кожної з дев’яти аероло- гічних станцій підбирали найближчі активні рефе- ренцні ГНСС-станції із відомими зенітними тро- посферними затримками. Різницю висот між аерологічними та ГНСС-станціями нівелювали інтерпо- люванням. За аналітичною моделлю Saastamoinen обчислювали гідростатичні складові ЗТЗ. Потім ці значення гідростатичних складових віднімали від повних зенітних тропосферних затримок, виведених із ГНСС-вимірювань, в результаті чого отримали значення вологих складових ЗТЗ.
  • Thumbnail Image
    Item
    Моніторинг тропосферної водяної пари у західній транскордонній зоні України
    (Видавництво Львівської політехніки, 2016) Савчук, С. Г.; Заблоцький, Ф. Д.
    Мета. Виявлення достовірних оцінок зенітних тропосферних затримок (ZTD) за даними GNSS- спостережень (дистанційний моніторинг тропосфери) на активних референнних станціях західної транскордонної зони України. Методика. Важливим продуктом, який отримують в GNSS-метеорології, є зенітні тропосферні затримки, а їхній безпосередній зв’язок із інтегрованою /осаджуваною водяною парою дає змогу отримати оперативну інформацію для числового прогнозування погоди. Однією із основних проблем у процесі використання таких результатів є достовірність отриманих оцінок величин інтегрованої/осаджуваної водяної пари із аналізу GNSS-даних. Відповідно стратегія аналізу GNSS-даних повинна забезпечувати такі оцінки ZTD, які відповідають вимогам GNSS-метеорології. Визначення величин ZTD традиційно грунтувалося на аналізі даних в режимі пакетного мережевого розв’язку з використанням методу найменших квадратів і способу спостереження, що спирається на утворення подвійних різниць (DD), та у режимі, близькому до реального часу (NRT). Абсолютний метод точного позиціонування (РРР), для реалізації якого був необхідний доступ до точних поправок супутникових годинників разом з прогнозованими орбітами, фактично не використовувався. З точки зору стратегії аналізу GNSS-даних метод РРР є популярним завдяки створенню у режимі реального часу (RT) Міжнародною службою GNSS (IGS) та іншими організаціями таких продуктів, як точні орбіти супутників і поправки годинників. З метою порівняння були вибрані дані ZTD, отримані програмними пакетами NRT-DD Bernese GNSS software та RT- PPP ALBERDING GNSS STATUS Software за період лютий-березень 2016 року. Критерієм вибору була максимальна кількість даних на кожній станції спостережень (2880 значень) за вказаний період. Усього для порівняння були вибрані 17 GNSS-станцій. Для кожної станції були побудовані графіки зміни ZTD за вказаний період спостережень, а також обчислена часова зміна різниць ZTD, отримана двома програмними пакетами. Результати. За результатами порівнянь виявлено, що використання різних стратегій опрацювання GNSS-даних не вносить істотного впливу на точність визначення зенітних тропосферних затримок. Отримані оцінки в 1-2 см цілком задовольняють вимоги до отримання зазначеного продукту у метеорології та кліматології. Наукова новизна. Проведені дослідження двох принципово різних стратегій опрацювання GNSS-даних дали змогу виявити реальну точність визначення зенітних тропосферних затримок, що дає змогу вважати отримані результати достовірнішими порівнянно з результатами, отриманими іншими дослідниками. Практична значущість. Отримані оцінкові величини ZTD з регіональної мережі перманентних GNSS- станцій західної транскордонної зони України можуть бути цінною інформацією у задачах числового прогнозування погоди. Цель. Выявление достоверных оценок зенитных тропосферных задержек (ZTD) по данным GNSS- наблюдений (дистанционный мониторинг тропосферы) на активных референцных станциях западной трансграничной зоны Украины. Методика. Важным продуктом, который получают в GNSS-метеорологии, являются зенитные тропосферные задержки, а их непосредственная связь с интегрированным /осаждаемым водяным паром позволяет получать оперативную информацию для числового прогнозирования погоды. Од¬ной из основных проблем в процессе использования таких результатов является достоверность полученных оценок величин интегрированного/осаждаемого водяного пара из анализа GNSS-данных. Соответственно, стратегия анализа GNSS-данных должна обеспечивать такие оценки ZTD, которые соответствуют требованиям GNSS-метеорологии. Определение величин ZTD традиционно базировалось на анализе данных в режиме пакетного сетевого решения с использованием метода наименших квадратов и способа наблюдений, опирающихся на создание двойных разностей (DD) в режиме, близком к реальному времени (NRT). Абсолютный метод точного позиционирования (РРР), для реализации которого был необходим доступ к точным поправкам спутниковых часов вместе с прогнозированными орбитами, практически не использовался. С точки зрения стратегии анализа GNSS-данных метод РРР является популярным благодаря созданию в режиме реального времени (RT) Международной службой GNSS (IGS) и другими организациями таких продуктов, как точные орбиты спутников и поправок часов. С целью сравнения были отобраны данные ZTD, полученные программными пакетами NRT-DD Bernese GNSS software и RT-PPP ALBERDING GNSS STATUS Software за февраль-март 2016 года. Критерием отбора было максимальное количество данных на каждой станции наблюдений (2880 значений) в указанный период. Всего для сравнения было выбрано 17 GNSS-станций. Для каждой станции были построены графики изменения ZTD за указанный период наблюдений, а также вычислено часовое изменение разностей ZTD, полученное двумя программными пакетами. Результаты. По результатам сравнений выявлено, что использование разных стратегий обработки GNSS-данных не влияет существенно на точность определения зенитных тропосферных задержек. Полученные оценки 1-2 см удовлетворяют полностью требования для получения указанного продукта в метеорологии и климатологии. Научная новизна.Проведенные исследования двух принципиально различных стратегий обработки GNSS-данных позволили выявить реальную точность определения зенитных тропосферных задержек, которые разрешают считать полученные результаты более достоверными в сравнении с результатами, полученными другими исследователями. Практическая значимость. Полученные оценочные величины ZTD с региональной сети перманентных GNSS-станций западной трансграничной зоны Украины могут стать ценной информацией в задачах числового прогнозирования погоды. Aim. Identifying of reliable estimates of zenith tropospheric delay (ZTD) by the data of GNSS observations (remote monitoring of the troposphere) on the active reference stations of the west cross-border zone of Ukraine. Methods. The zenith tropospheric delays, and their direct link with integrated / precipitated water vapor are important products that are obtained in GNSS-meteorology. They allow to get the rapid information for numerical weather prediction. The reliability of the estimates of the integrated / precipitated water vapor from the GNSS data analysis is one of the main problems in the use of these results. Accordingly, strategy of analysis GNSS data should provide such ZTD estimations, which meet requirements of GNSS-meteorology. The determination of ZTD values was grounded traditionally on data analysis in the mode of packet network solution using least square method and observation technique which based on double differencing (DD) in the NRT mode. The absolute method of PPP which required precise corrections for satellite clocks together with predicted orbits, wasn’t applied practically. From point of view of analysis strategy of GNSS data the PPP method is popular thanks to creating by the International GNSS Service (IGS) and others institutions of a such products as accurate satellite orbits and clock corrections in RT mode. For comparing the ZTD data, obtained by the packages NRT-DD Bernese GNSS software and RT-PPP ALBERDING GNSS STATUS Software were selected for the February-March of 2016. The maximum amount of data at each observation station (2880 values) was by the selection criterion in this period. 17 GNSS stations were selected for comparison. The graphs of ZTD change over this period have been constructed for each station, as well as the hour changes of ZTD differences obtained by two packages. Results. Comparison results established the following: the use of different processing strategies GNSS data not significantly affect on the accuracy of zenith tropospheric delay. The obtained estimates of 1-2 cm fully satisfy the requirements for the indicated product in meteorology and climatology. Scientific novelty. The realized studies of two fundamentally different processing strategies GNSS data revealed the real accuracy of the zenith tropospheric delay, which allows to consider the results more reliable in comparison with results obtained by other researchers. Practical significance. Estimated values of ZTD obtained from a regional network of permanent GNSS stations of the western cross-border zone of Ukraine can become a valuable information in problems of numerical weather prediction.
  • Thumbnail Image
    Item
    Methodological steps of GNSS meteorology
    (Видавництво Львівської політехніки, 2014) Zablotskyy, F. D.
    This paper highlights the gradual steps of GNSS meteorology realization. The structure of GNSS meteorology is represented in the introduction in general. The main feature of it is that the neutral atmosphere delays the passage ofGNSS signal, causing the error in the measured distance is called tropospheric delay. If in geodesy a lot of efforts have been put to reduce this error to a desired level, then for meteorology this error was used as an important source of information about the state of moisture accumulation in atmosphere and its dynamics in space and time. The next sections describe the basic equation of code pseudo-distance with the transition to the value of tropospheric delay. Then using a mapping function the transition from GPS tropospheric delay to its zenith value is shown. As well as there are given the calculation formulas of zenith tropospheric delay both by integration of vertical profiles of basic meteorological parameters and using the surface atmospheric pressure only. Further a transition from GPS tropospheric delay to its zenith value with use a mapping function is shown. A procedure for obtaining of the wet component of zenith tropospheric delay from GPS observations and formulas for the determining of average temperature of weighted water vapor and integrated as well as precipitable water vapor are described. Запропонована стаття висвітлює поступові кроки реалізації ГНСС-метеорології. У вступі змальовується сама структура ГНСС-метеорології, основна особливість якої полягає у тому, що нейтральна атмосфера затримує проходження ГНСС-радіохвилі, викликаючи похибку у виміряній відстані, що називається тропосферною затримкою. І якщо в геодезії прикладають масу зусиль, щоб звести цю похибку до бажаного мінімуму, то в метеорології цю похибку почали використовувати як важливе інформаційне джерело про стан атмосферного вологонасичення та його динаміку як у просторі, так і в часі. У подальших розділах висвітлюється основне рівняння кодової псевдовідстані з переходом до величини тропосферної затримки. Далі, використовуючи функцію відображення, показують перехід отриманої із GPS-спостережень тропосферної затримки до її зенітного значення. Також наводяться формули обчислення зенітної тропосферної затримки як інтегруванням вертикальних профілів основних метеорологічних параметрів, так і з використанням лише приземного атмосферного тиску. Описано процедуру отримання вологої складової зенітної тропосферної затримки із GPS-спостережень, а також формули визначення середньої температури завислої водяної пари та інтегрованої й осаджуваної водяної пари. Предлагаемая статья освещает постепенные шаги реализации ГНСС-метеорологии. Во введении в общем описывается сама структура ГНСС-метеорологии, основная особенность которой состоит в том, что нейтральная атмосфера задерживает прохождение ГНСС-радиоволны, вызывая погрешность в измеренном расстоянии, что называєтся тропосферной задержкой. И если в геодезии прикладывают массу усилий, чтобы привести эту погрешность к желаемому минимуму, то в метеорологии её начали использовать как важный информационный источник о состоянии атмосферного влагонасыщения и его динамике как в пространстве, так и во времени. В дальнейших разделах освещается основное уравнение кодового псевдорасстояния с переходом к величине тропосферной задержки. Далее, используя функцию отображения, показывается переход от полученной из GPS-наблюдений тропосферной задержки к её зенитному значению. Также приводятся формулы вычисления зенитной тропосферной задержки как путем интегрирования вертикальных профилей основных метеорологических параметров, так и с использованием только приземного атмосферного давления. Описываются процедура получения влажной составляющей зенитной тропосферной задержки из GPS- наблюдений, а также формулы определения средней температуры взвешенного водяного пара, а также интегрованного и осаждаемого водяного пара.
  • Thumbnail Image
    Item
    Вплив об'ємної конденсації водяної пари на хемосорбцію сірки (IV) оксиду із парогазової суміші
    (Видавництво Львівської політехніки, 2011) Яворський, В. Т.; Гелеш, А. Б.; Калимон, Я. А.; Знак, З. О.
    Досліджено вплив конденсації водяної пари на абсорбцію SO2 в горизонтальному абсорбері з ковшоподібними диспергаторами. Investigational influence of process of condensation of aquatic pair on a process absorption of SO2 in a horizontal absorber with tub-shaped.