Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 9 of 9
  • Thumbnail Image
    Item
    Про використання сейсмічних хвиль Релея в охоронних системах
    (Видавництво Львівської політехніки, 2015) Рак, Володимир
    Запропоновано використання сейсмічних хвиль Релея у охоронних системах сигналізації, які, крім ідентифікації порушення охоронного режиму, дадуть змогу визначати координати цього порушення. Проведено оцінку зони чутливості таких систем та визначено напрями подальших експериментальних досліджень з метою встановлення доцільності їх практичної реалізації. Предложено использование сейсмических волн Рэлея в охранных системах сигнализации, которые, помимо идентификации нарушения охранного режима, смогут определять координаты этого нарушения. Проведена оценка зоны чувствительности таких систем и определены направления дальнейших экспериментальных исследований с целью установления целесообразности их практической реализации. There are four types of seismic waves: primary waves , secondary waves , wave Rayleigh and Love waves. The first two types are called depth waves, because these waves penetrate into the depths of the earth. Rayleigh waves and Love waves called surface waves. They can to propagate on the surface. Given the characteristics of propagation of these waves can be concluded that even at low energies excitation source, Rayleigh waves can propagate at a much greater distance than depth waves, so it would be advisable to use them in security systems. Knowing the velocity of the waves, which is measured the sensors, the ratio of amplitudes and time delays with which they come, we can determine the coordinates of the source of vibration. The output voltage of existing sensors (seismometers) is a function of frequency seismic waves and their amplitudes. This may be the cause of the error. Autor is suggested another principle of the sensor, output signal of which is a function only of the amplitude. Is posted conversion function of sensors and dependence on the sensitivity threshold. If we know threshold of the sensitivity of the sensors, with certain assumptions, we can estimated distance from which capacitive seismometer feels seismic waves excitedWalking man at different values of the coefficient of energy absorption of seismic waves geological environment. For seismic exploration seismic surface waves are interference. Most likely, thismay explain the lack of information about the amount of energy that falls on the formation of surface waves and the dependence of this quantity on the power source. Zone of sensitivity may be limited to so-called microseisms arising from soil vibrations caused by fluctuations of the trees, transport, and industry. To limit the impact of microseisms be appropriate to apply filters. Therefore, before decision about the possibility of practical implementation of such systems, data relating to the area of sensitivity of seismometers need additional experimental verification in the field where necessary to experimentally explore: how much energy of the source belongs Rayleigh waves and Love waves ; energy distribution between surface waves; by the ratio of amplitudes determine the absorption coefficient of surface waves for areas where the security system will be used.
  • Thumbnail Image
    Item
    Использование кинематического и динамического пропагаторов для приближенного решения прямой динамической задачи сейсморазведки
    (Видавництво Львівської політехніки, 2013) Петровский, О. П.; Кропивницкий, Я. М.
    Рассмотрен эффективный способ приближенного решения прямой динамической задачи сейсморазведки с использованием теории кинематического и динамического пропагаторов. Разработанный алгоритм включен, в качестве подсистемы, в автоматизированную систему количественной комплексной интерпретации геолого-геофизических данных GCIS. Проведенный вычислительный эксперимент показал адекватность и вычислительную эффективность полученного решения в сопоставлении с традиционным сеточным методом решения прямой динамической задачи сейсморазведки. Розглянуто ефективний спосіб наближеного розв’язування прямої динамічної задачі сейсморозвідки з використанням теорії кінематичного і динамічного пропагаторів. Розроблений алгоритм включений в якості підсистеми в автоматизовану систему кількісної комплексної інтерпретації геолого-геофізичних даних GCIS. Проведений обчислювальний експеримент показав адекватність і обчислювальну ефективність отриманого розв’язку в співставленні з традиційним сітковим методом розв’язування прямої динамічної задачі. An effective algorithm is suggested for obtaining the approximate solution of direct dynamic problem of seismic exploration, using a theory of kinematic and dynamic propagators. The developed algorithm has been included as a subsystems in automated system of quantitative complex interpretation of geologic and geophysical data GCIS. The modeling experiment has shown the adequacy and efficiency of the solution as was compared to traditional grid method of solving the direct dynamic problems.
  • Thumbnail Image
    Item
    Застосування геофізичних методів для пошуків, розвідки і розробки природного газу зі сланцевих порід
    (Видавництво Львівської політехніки, 2013) Кухар, Н. П.; Петровський, О. П.; Ганженко, Н. С.
    Розглянуто поняття „сланцевого газу”, як природного газу зі сланцевої породи та його загальні характеристики. На основі аналізу досвіду США встановлено залежність петрофізичних властивостей сланцевої породи від їх потенційної газонасиченості. Проведено моделювання сейсмічних ефектів, які виникають після проведення гідророзриву пласта. Обґрунтована можливість застосування геофізичних методів при пошуках, розвідці і розробці родовищ природного газу зі сланцевих порід, в тому числі, і для території України. Рассмотрено понятие „сланцевый газ”, как природный газ из сланцевой породы и его общие характеристики. На основе анализа опыта США установлена зависимость петрофизических свойств сланцевой породы от ее потенциальной газонасыщенности. Проведено моделирование сейсмических эффектов возникающих после проведения гидроразрыва пласта. Обоснована возможность применения геофизических методов при поисках, разведке и разработке месторождений природного газа из сланцевых пород, в том числе и для территории Украины. The definition of „shale gas” as a natural gas from shale and its general characteristics are considered. Based on analysis of the experience in the United States, the dependence of shale petrophysical properties on its potential gas-saturation was determined. Modeling of seismic effects, appearing after hydraulic fracturing, was performed. The possibility of using the geophysical methods in the search, exploration and production of natural gas from shale is substantiated, in the territory of Ukraine as well.
  • Thumbnail Image
    Item
    Прогнозування нафтогазоперспективних ділянок у межах південно-західної частини Срібненської депресії Дніпровсько-Донецької западини за даними гравірозвідки
    (Видавництво Львівської політехніки, 2015) Анікеєв, С. Г.; Шуровський, О. Д.
    Мета. Метою роботи є інтерпретація гравіметричних матеріалів з використанням даних сейсморозвідки для виявлення зон розущільнення у товщах візейських карбонатів Срібненської депресії Дніпровсько-Донецької западини. Ці зони ймовірно пов’язані з розвитком перспективних на поклади вуглеводнів масивів органогенних вапняків. Методика. Методика досліджень полягає в інтерпретації локальних аномалій поля сили тяжіння масштабу 1:50000, матеріалів детального високоточного гравітаційного знімання та у моделюванні розподілу густин у межах товщ візейських карбонатів по профілях і ділянках, де проведено сейсмічну розвідку. Гравітаційне моделювання виконано за допомогою авторських комп’ютерних технологій рішення 2D і 3D обернених задач гравірозвідки. Результати. За фондовими гравіметричними матеріалами побудовано карти локальних аномалій поля сили тяжіння. Виявлено низку від’ємних локальних аномалій, пов’язаних з пастками вуглеводнів. За матеріалами профільних високоточних гравіметричних спостережень по сейсмічних профілях виконано моделювання розподілу густин у межах карбонатної “плити”. За результатами комп’ютерної інтерпретації детальних площинних гравіметричних спостережень масштабу 1:10000, які проведено на Гнідинсько-Білоусівській площі, побудовано тривимірну модель розподілу густини у межах візейських карбонатів. За результатами 2D і 3D гравітаційного моделювання виявлено зони розущільнених карбонатів, які тяжіють до піднятих ділянок поверхні карбонатної “плити” і до ділянок підвищеної товщини карбонатів, у межах яких, за даними сейсморозвідки, прогнозовано розвиток біогермних споруд. У тривимірній детальній густинній моделі, крім зон розущільнення ізометричної або складної форми, виявлено кільцеві аномалії розущільнення, що оточують ущільнені карбонати. Результати моделювання використано для дослідження перспектив Гнідинсько-Білоусівської площі ДДЗ на нафтогазоносність. Наукова новизна. Показано, що у складних геолого-геофізичних умовах засто¬сування високоточної гравірозвідки і комп’ютерних технологій інтерпретації її матеріалів є недорогим і геологічно ефективним інструментом вирішення завдань детального розчленування за густиною об’єктів незначної потужності в об’ємі і по розрізу, навіть, на великих глибинах (більше ніж 4000 м). Практична значущість. Встановлено, що комп’ютерна переінтерпретація фондових кондиційних гравіметричних карт масштабу 1:50000 значно підвищує їх інформативність та може бути основою для виявлення нових ділянок, перспективних на пошуки і розвідку родовищ нафти і газу. Детальне тривимірне гравітаційне моделювання дало змогу окреслити перспективні густинні аномалії: локальні зони розущільнення та зони ущільнення, що обрамлені аномаліями розущільнення. Цель. Целью работы является интерпретация гравиметрических материалов с использованием данных сейсморазведки для выявления зон разуплотнения в толщи визейских карбонатов Сребненской депрессии Днепровско-Донецкой впадины. Эти зоны могут быть связаны с развитием перспективных на месторождения углеводородов массивов органогенных известняков. Методика. Методика исследований заключается в интерпретации локальных аномалий поля силы тяжести масштаба 1:50000, материалов детальной высокоточной гравитационной съемки и моделировании распределения плотностей в пределах толщ визейских карбонатов по профилям и участкам, где проведена сейсмическая разведка. Гравитационное моделирование выполнено с помощью авторских компьютерных технологий решения 2D и 3D обратных задач гравиразведки. Результаты. По фондовым гравиметрическим материалам построены карты локальных аномалий поля силы тяжести. Выявлен ряд отрицательных локальных аномалий, связанных с залежами углеводородов. По материалам профильных высокоточных гравиметрических наблюдений по сейсмическим профилям выполнено моделирование распределения плотностей в пределах карбонатной “плиты”. По результатам компьютерной интерпретации детальных площадных гравиметрических наблюдений масштаба 1:10000, проведенных на Гнидинско-Белоусовской площади, построена трехмерная модель распределения плотностей в пределах визейских карбонатов. По результатам 2D и 3D гравитационного моделирования выявлены зоны разуплотнения карбонатов, которые тяготеют к приподнятым участкам поверхности карбонатной “плиты” и к участкам повышенной толщины карбонатов, в пределах которых по данным сейсморазведки прогнозировались биогермные постройки. В трехмерной детальной штотностной модели кроме зон разуплотнения изометрической или сложной форм выявлены кольцевые аномалии разуплотнения, которые обрамляют уплотненные карбонаты. Результаты моделирования использованы для исследования перспектив Гнидинско-Белоусовской площади ДДВ на нефтегазоносность. Научная новизна. Доказано, что в сложных геолого-геофизических условиях применение высокоточной гравиразведки и компьютерных технологий интерпретации ее материалов является недорогим и геологически эффективным инструментом решения задачи детального расчленения по плотности объектов незначительной мощности в объеме и в разрезе, даже, на больших глубинах (более 4000 м). Практичекая значимость. Практика свидетельствует, что компьютерная переинтерпретация фондовых кондиционных гравиметрических карт масштаба 1:50000 значительно повышает их информативность и может быть основой для выявления новых участков, перспективных на поиски и разведку месторождений нефти и газа. По данным детального трехмерного гравитационного моделирования оконтурены перспективные плотностные аномалии: локальные зоны разуплотнения и зоны уплотнения, которые обрамлены аномалиями разуплотнения. Purpose. The purpose of the article is the interpretation of the gravity data with using the seismic data for revealing of zones of decompression with high porosity in the Visean carbonate of the Srebnenska depression (within Dnepro-Donetsk Basin). These zones may be associated with the development of organic Limestone massives, which are promising for hydrocarbon deposits. Methodology. The studying methods include a interpretation of local anomalies of the Gravity field of Scale 1:50 000, data of the detailed and precise gravity survey and modeling of the distribution of densities within the Visean carbonate thickness on zones and along profiles, where a seismic research has been done. The gravity modelling has been done with the help of some copyrights computer technology in 2D and 3D direct and inverse problems of gravity. Results. Local anomaly maps of the gravity field have been designed with the help of stock gravimetric materials. Identified a number of negative local anomalies are associated with the hydrocarbon deposits. According to the materials of specialized precision gravity observations from seismic profiles modeled density distribution within the carbonate "plate". According to the results of computer interpretation of detailed gravimetric observations of scale of 1:10,000, carried out in the region of Gnidynsko-Belousivska square, built a three-dimensional model of the density distribution within the Visean carbonate. According to the results of 2D and 3D gravity modeling there were zones of carbonate decompression revealed, which tend to the elevated surface areas of the carbonate "plate" and to the areas with increased carbonate thickness within which bioherm constructions were predicted by seismic data to be situated. In this detailed three-dimensional density model in addition to the decompression of isometric zones or complex forms there are also circle anomalies of decompression, which cover sealed carbonates, has been revealed. The simulation results are used to study the prospects Gnidynsko-Belousivska Square of DDB for petroleum potential. Originality. It’s proved that in complex geological-geophysical conditions the use of high-precized gravity research and computer technology of interpretation of its materials is actually inexpensive and geologically effective instrument of solving of a detailed discomposition task for low power density of objects in the volume and in the section, even in the depths more than 4000 m. Practical significance. On practice its shown that the computer re-interpretation of its conditioning stock gravimetric maps of scale 1:50 000 significantly increases its informative value and it can be the basis for the identifying of new sites, that are promising for the prospecting and exploration of oil and gas. According to of three-dimensional detailed model has allowed outlining prospective density anomalies: local zones and decompression zones, which are framed by the anomalies of decompression.
  • Thumbnail Image
    Item
    Моделювання хвильового поля методом скінченних елементів на структурі Дробишівського газоконденсатного родовища
    (Видавництво Львівської політехніки, 2012) Стародуб, Ю. П.; Брич, Т. Б.; Купльовський, Б. Є.
    Наведено результати моделювання сейсмічного хвильового поля на моделі розрізу земної кори (на прикладі Дробишівського газоконденсатного родовища). Розріз земної кори, отриманий геофізичними дослідженнями свердловин, подано у вигляді пластової моделі. Під час моделювання хвильового поля сейсморозвідки враховано особливості двовимірного розрізу - поздовжні, поперечні та обмінні хвилі, одержані на сейсмограмах поздовжніх і поперечних коливань. В работе представлены результаты моделирования сейсмического волнового поля на модели сечения земной коры (на примере Дробишивского газоконденсатного месторождения). Разрез земной коры, полученный геофизическим исследованием скважин, представлен в виде пластовой модели. При моделировании волнового поля сейсморазведки учитывались особенности двумерного сечения – продольные , поперечные и обменные волны, полученные на сейсмограммах продольных и поперечных колебаний. The results of seismic wave field modeling on the cross-section model of the crust (for Drobyshivske gas-condensate field example) were presen ted. The cut of the crust which resul ting the boreholes geophysical studies is represented as a reservoir model. When modeling, seismic wave field features of two-dimensional cross section were taken into account – longitudinal, transv erse and exchange waves re ceived on seismograms of longitudinal and transverse vibrations.
  • Thumbnail Image
    Item
    Моделювання хвильового поля на структурі газоконденсатного родовища
    (Національний університет “Львівська політехніка”, 2011) Стародуб, Ю. П.; Купльовський, Б. Є.; Гончар, Т. М.
    У роботі представлені результати моделювання сейсмічного хвильового поля на моделі перетину земної кори (на прикладі Дробишівського газоконденсатного родовища). Складнопобудований розріз земної кори, отриманий геофізичним дослідженням свердловин, представлений у виді пластової моделі. При моделюванні хвильового поля сейсморозвідки враховувалися особливості двовимірного перетину: поздовжні, поперечні і обмінні хвилі отримані на сейсмограмах поздовжніх і поперечних коливань унаслідок задання розподілу швидкостей поздовжніх, поперечних хвиль і густини середовища в півпросторі. В работе представлены результаты моделирования сейсмического волнового поля на модели сечения земной коры (на примере Дробишивского газоконденсатного месторождения). Сложнопостроенный разрез земной коры, полученный геофизическим исследованием скважин, представлен в виде пластовой модели. При моделировании волнового поля сейсморазведки учитывались особенности двумерного сечения: продольные, поперечные и обменные волны, полученные на сейсмограммах продольных и поперечных колебаний вследствие задания распределения скоростей продольных, поперечных волн и плотности среды в полупространстве. The results of seismic wave field modeling on the cross-section model of the crust (for Drobyshivske gascondensate field example) were presented. Complicated cut of the crust, resulting geophysical study, represented as a reservoir model. When modeling, seismic wave field features of two-dimensional cross section were taken into account: longitudinal, transverse and exchange waves received on seismograms of longitudinal and transverse vibrations as a result of default distribution of velocities of longitudinal, transverse waves and the density in half-space medium.
  • Thumbnail Image
    Item
    Дослідження енергоінформаційного методу визначення геофізичних параметрів геологічного середовища за даними сейсморозвідки
    (Національний університет "Львівська політехніка", 2011) Карпенко, В. М.; Стародуб, Ю. П.; Карпенко, О. В.; Баснєв, Є. О.
    Досліджений метод енергоінформаційного аналізу хвильового поля (МЕА-ХП) на прикладі даних 3D сейсморозвідки Дробишівської площі. Результати дослідження порівняні з результатами аналізу хвильового поля, виконані частотними методами Фур’є, Проні, Гільберта, вайвлет-функцій та з результатами параметричної інтерпретації в геофізичних параметрах, отриманих з використанням програмної системи Petrel. Показано, що МЕА-ХП узагальнює названі методи і дозволяє визначати геофізичні параметри геологічного середовища (ГС) до вивчення його бурінням та геофізичним дослідженням свердловин щодо випробування ГС на наявність нафтогазових покладів. Исследован метод энергоинформационного анализа волнового поля (МЭА-ВП) на примере данных 3D сейсморазведки Дробышивской площади. Результаты исследования сопоставлены с результатами анализа волнового поля, выполненные частотными методами Фурье, Прони, Гильберта, вайвлет-функций и с результатами параметрической интерпретации в геофизических параметрах, полученных с использованием программной системы Petrel. Показано, что МЕА-ХП обобщает названные методы и позволяет определять геофизические параметры геологической среды (ГС) до изучения её бурением и геофизическим исследованиями скважин при исследовании ГС относительно присутствия нефтегазовых отложений. Energy-researched analysis of the wave field (ERA-WF) on the example of 3D seismic data Drobyshivska area is investigated. Results of the study are compared with the results of analysis of the wave field, made by the frequency Fourier method, Prony, Gilbert, wavelet functions, and the results of the parametric interpretation of geophysical parameters derived using a software system Petrel. We prove that the ERA-WF summarizes the methods mentioned and allows to determine the geophysical parameters of geological medium (GM) to study it before drilling and well logging concerning oil and gas saturation.
  • Thumbnail Image
    Item
    Розв’язання оберненої задачі сейсморозвідки з використанням енергетичного підходу до аналізу хвильових полів
    (Видавництво Національного університету «Львівська політехніка», 2010) Стародуб, Ю. П.; Карпенко, О. В.
    Розглянуто реалізацію енергетичного підходу до аналізу хвильового поля щодо розроблюваної в роботі інформаційної моделі геологічного середовища. Наведено розв’язання оберненої задачі сейсморозвідки, яке передбачає отримання геофізичних параметрів геологічного середовища з використанням польової сейсморозвідувальної інформації. З метою отримання геолого-геофізичних параметрів середовища виконані перетворення хвильового поля, які умовно поділяють на первинні та остаточні (інтерпретацію). Інтерпретаційний етап перетворення хвильових полів передбачає застосування розроблених математичних алгоритмів. Рассматрены реализация энергетического подхода к анализу волнового поля по разрабатываемой в работе информационной модели геологической среды. Представлено решение обратной задачи сейсморазведки, которое предусматривает получение геофизических параметров геологической среды с использованием полевой сейсморазведочной информации. С целью получения геолого-геофизических параметров среды проводится ряд преобразований волнового поля, которые условно разделяют на первичные и окончательные (интерпретацию). Интерпретационный этап преобразования волновых полей предусматривает применение разработанных математических алгоритмов. In the paper the implementation of energy wave field analysis approach for developed informational model of the geological medium is considered. The solutions of seismic inverse problem are presented, which involves geophysical parameters obtaining of geological medium with the use of field seismic data. In order to obtain geological and geophysical environmental parameters the number of wave field transformations are being carried out, conventionally divided into primary and final part(interpretation). Interpretational phase of wave fields’ transformation involves usage of the elaborated mathematical algorithms.
  • Thumbnail Image
    Item
    Моделирование сейсмических разрезов с учетом напряженного состояния среды
    (Видавництво Національного університету «Львівська політехніка», 2010) Кулиев, Г. Г.; Агаев, Х. Б.
    Представлены методики для обработки данных в сейсморазведке – для инверсии временных сейсмических разрезов в глубинные, позволяющие экстраполировать одномерные модели физических параметров среды, определенные по данным скважинных геофизических исследований, в около скважинные пространства. Предусмотрена корректировка модели с учетом термодинамического состояния среды,расчет различных физических параметров среды в рамках классической и неклассической теорий деформаций, а также расчет синтетических сейсмограмм. Так, разность значений μ и λ между неклассическим и классическим методами составляет соответственно 4,7 % и -1,4 %, что является существенным. Двухмерная модель среды получается путем экстраполяции одномерной модели с учетом положения акустических границ. При переходе к близкой к реальной (3D) модели учитываются изменения значений пластовых скоростей продольных и поперечных волн и плотности по тонким пластам по глубине и по профилю, а также изменения геостатического давления среды по пластам вдоль профиля. При этом достигается значимое уточнение времен, определяющих глубины залегания сейсмических горизонтов. Разность времен достигает 0,17 с, что эквивалентно разности в глубинах до 330 м и более и важно для уточнения структурных построений, особенно касательно поиска ловушек углеводородов. Наведено методики для оброблення даних у сейсморозвідцідля інверсії часових сейсмічних розрізів в глибинні, що дають змогу екстраполювати одновимірні моделі фізичних параметрів середовища, визначені за даними свердловинних геофізичних досліджень, у навколосвердловинний простір. Передбачено коригування моделі з урахуванням термодинамічного стану середовища, розрахунок різних фізичних параметрів середовища в межах класичної та некласичної теорій деформацій, а також розрахунок синтетичних сейсмограм. Так, різниця значень μ і λ між некласичним і класичним методами становить відповідно 4,7% і -1,4%, що є істотним. Двовимірна модель середовища отримується екстраполяцією одновимірної моделі з урахуванням положення акустичних границь. У разі переходу до близької до реальної (3D) моделі враховуються зміни значень пластових швидкостей поздовжніх і поперечних хвиль та густини по тонких пластах вздовж профілю та з глибиною, а також зміни геостатичного тиску по пластах вздовж профілю. До того ж досягається істотне уточнення часів, що визначають глибини залягання сейсмічних горизонтів. Різниця часів досягає 0,17 с, що еквівалентно різниці в глибинах до 330 м і більше і є важливим для уточнення структурних побудов, особливо щодо пошуку пасток вуглеводнів. The paper presents the techniques for processing of seismic prospecting datafor inversion of time seismic sections to depth ones. This makes it possible to extrapolate defined by wells’ geophysical investigations one-dimensional models of medium’s physical properties into the borehole environment. Correcting of the model taking into account the thermodynamic state of the medium and calculation of various physical properties of medium within the classical and non-classical theories of deformation as well as calculation of synthetic seismograms is provided. Thus, the differences between the classical and non-classical theories for values μ and λ are correspondingly 4.7 % and -1.4 %, which is substantial.2D model of the medium is composed by extrapolating of one-dimensional model accounting the location of acoustic borders. At passing to close to the real (3D) model the changes of values of formation velocities of longitudinal and transverse waves and densities of thin layers in depth and profile takes into account as well as the changes of geostatic pressure on layers along the profile. At thus the substantial refinement of time which define the depth of the seismic horizons is reached. Time difference reaches 0.17 s, which is equivalent to the difference in depths up to 330 m or more and it is important for specifying of structural models, especially concerning the hydrocarbon traps prospecting.