Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    Assessment of qualitaty of quasigeoid models in Riga city
    (Видавництво Львівської політехніки, 2023-06-01) Celms, A.; Trevoho, I.; Kolodiy, P.; Pukite, V.; Virkavs, M.; Lidumnieks, T.; Latvia University of Life Sciences and Technologies; Lviv Polytechnic National University; Lviv National Environmental University; Latvian Geospatial Information Agency
    The study of the shape and size of the globe on a global scale is crucial to understanding the challenges and impacts of climate, the life sciences, hydrology, hydrography and geology on the planet as a whole. The Earth's topography – the surface, the relief topography that characterizes two different types of regions and certain local urban areas - is varied and changes occur periodically. The practical significance is to create a homogeneous geodetic reference system and geodetic frame based on certainty and reliability. A dynamic model of the globe could solve many future problems. Determining the topographic surface of the Earth - the altitude above sea level – using precise levelling methods is laborious task. Today, satellite-based measurement methods - GNSS - are used. GNSS allows to determine ellipsoidal heights using satellite systems and the global ellipsoidal model parameters (X,Y,Z). The geoid – surface of the mean sea level will enable to derive normal height from ellipsoidal heights; Then compared with the normal heights of the geometric levelling method. The need for a geoid or quasigeoid model in the economy is important for construction, navigation, logistics, users and maintainers of geographic information systems. A high-precision geoid or quasigeoid model would make a qualitative contribution to real-time GNSS measurements. The theoretical part of the study gives an overview of the shape and modelling of the globe; technological methods for the development of geoid and quasigeoid models; characteristics of geoid and quasigeoid models. The study includes GNSS measurements on known Class 1 leveling line points - obtaining ellipsoidal height values at 8 selected points in the southern part of Riga city. The obtained measurements were processed and the data were compared with available geoid and quasi-geoid models.
  • Thumbnail Image
    Item
    Comparative analyses of quasigeoid models for the Republic of Moldova territory
    (Видавництво Львівської політехніки, 2017-06-01) Киріяк, В.; Chiriac, V.; Кирияк, В.; Technical University of Moldova
    В даній статті представлені результати порівняння моделей квазігеоїда для території Республіки Молдова з використанням GNSS-вимірювань для нівелювання.
  • Thumbnail Image
    Item
    Оптимізація методу найменших квадратів для визначення гармонічних коефіцієнтів на сфері
    (Видавництво Львівської політехніки, 2015) Марченко, О. М.; Лук'янченко, Ю. О.
    У сучасному світі знання гравітаційного поля займає вагоме значення, оскільки без таких відомостей неможливе виконання низки сучасних задач, пов’язаних із супутниковими технологіями і не тільки. До таких задач можна зарахувати: запуск ракетоносіїв, прогнозування орбіт супутників, дослідження поверхні Світового океану, взаємна трансформація геодезичних та нормальних висот та багато іншого. Мета: з кожним роком даних про гравітаційне поле Землі з’являється все більше і більше, що ускладнює їх оптимальне використання та сумісне опрацювання, тому важливо використовувати алгоритми, які б давали змогу одночасно опрацьовувати якомога більшу кількість вхідної інформації. Навіть із наявністю обчислювальних кластерів це не є простим завданням. Враховуючи тенденцію до збільшення запуску космічних місій, то кількість даних постійно зростатиме. Методика: на основі вище зазначеного, у роботі представлено модифікований метод найменших квадратів, що використовується для визначення гармонічних коефіцієнтів на основі аномалій сили тяжіння DTU 10. Ця вхідна інформація представлена набором аномалій сили тяжіння у вільному повітрі, розташованих у точках регулярної сітки (гріду) з роздільною здатністю 5'х5'. Наукова новизна та практична значущість: стаття описує принципи створення антиподно- рівномірного гріду та його розбиття на 8 частин (запропонованого автором) з метою використання ортогональних властивостей, які виникають за такого розміщення точок. Результати: так, визначено набір гармонічних коефіцієнтів до 720 порядку/ступеня, наведено спектральні характеристики порівняно із моделлю ЕGМ 2008. На основі отриманої одержаної моделі гравітаційного поля побудовано глобальний квазігеоїд. Для побудови квазігеоїда використано формулу Брунса, в яку входить нормальна сила тяжіння (нормальне прискорення вільного падіння), розрахована наближено, оскільки це майже не впливає на результат. До того ж основним завданням є оптимізація методики визначення гармонічних коефіцієнтів, а не побудова високоточного геоїда. Для підтвердження отриманих результатів проведено порівняння отриманих висот квазігеоїда із висотами квазігеоїда, визначеними за допомогою GNSS-нівелювання на полігоні New-Мехісо. В современном мире знания гравитационного поля занимает большое значение. Поскольку без таких сведений невозможно выполнение ряда современных задач, связанных со спутниковыми технологиями и не только. К таким задачам можно отнести: запуск ракетоносителей, прогнозирования орбит спутников, исследования поверхности Мирового океана, взаимная трансформация геодезических и нормальных высот и многое другое. Цель: каждым годом данных о гравитационном поле Земли появляется все больше и больше, что затрудняет задачу их оптимального использования и совместной обработки, поэтому важно использовать методы, которые бы позволяли одновременно обрабатывать как можно большее количество входящей информации. Даже с наличием вычислительных кластеров это есть не легкой задачей. Учитывая тенденцию к увеличению запуска космических миссий, количество данных будет расти и расти. Методика: исходя из выше сказанного в работе представлений модифицированный метод наименьших квадратов, используемый для определения гармонических коэффициентов на основе аномалий силы тяжести DTU 10. Данная входная информация представлена набором аномалий силы тяжести в свободном воздухе, расположенных в точках регулярной сетки (грида) с разрешением 5 'х 5'. Научная новизна и практическая значимость: статья описывает принципы создания антиподно-равномерного грида и его разбиение на 8 частей с целью использования ортогональных свойств, которые возникают при данном расположении точек. Результаты: таким образом определен набор гармонических коэффициентов до 720 порядке / степени, приведены спектральные характеристики по сравнению с моделью ЕGМ 2008. На основе полученной модели грави¬тационного поля построено глобальный квазигеоида. Для построения квазигеоида использовалась формула Брунса, в которую входит нормальная сила тяжести (нормальное ускорение свободного падения) рассчитана приближенно, поскольку это почти не влияет на конечный результат. Более того задачей работи есть оптимизация методики определения гармонических коэффициентов, а не построение высокоточного геоида. Для подтверждения полученных результатов было проведено сравнение полученных высот квазигеоида с высотами квазигеоида, определенными с помощью GNSS-нивелирования на полигоне New-Mexico. Optimization of least squares method to determine the harmonic coefficients on the sphere Knowledge of the gravity field takes significance place in today's world. Such information is very important for performing of a number of contemporary problems related to satellite technologies. Such problems include: the launch of launch vehicles, satellites orbit prediction, the study of the surface of the oceans, transformation of normal and geodetic heights and more. Goal: Each year, data on the Earth's gravitational field appears more and more that complicates the task of optimal using and joint processing, so it is important to use algorithms that would allow simultaneously to process the largest possible number of input data. But, it is not easy task, even with performing of computing cluster. The increasing tendency to space mission launches, will causing growing of the number of data. Method: based on the above it is represented in the modified least squares method used to determine the harmonic coefficients based on gravity anomalies DTU 10. This input information is provided by array of free air gravity anomalies, arranged in a regular grid points with a resolution of 5 'x 5'. Scientific novelty and practical significance: article describes the principles of antipodean-uniform grid and its division into 8 parts for use of orthogonal properties that arise in this points situation. Results: Thus defined set of harmonic coefficients up to 720 order / degree, and were compared with the model EGM 2008 in terms of spectral characteristics. Was built quasigeoid based on the obtained model. To build quasigeoid used Bruns formula, which includes normal gravity (normal gravitational acceleration) is calculated approximately, because it almost does not affect the final result. Moreover the main objective is to optimize the methodology for determining of the harmonic coefficients, instead of the construction of high-precision geoid. Was performed comparison quasigeoid heights defined in the GNSS- leveling at the site New-Mexico for confirmation of the results.
  • Thumbnail Image
    Item
    Визначення геоїда, поля сили тяжіння та топографії Чорного моря за даними супутникової альтиметрії
    (Видавництво Львівської політехніки, 2015) Марченко, О. М.; Лопушанський, О. М.
    Мета роботи - розробити методику розв’язування основного завдання геодезії на акваторіях шляхом використання даних супутникової альтиметрії, а саме - визначити стаціонарну топографію Світового океану відносно геоїда. Метод супутникової альтиметрії як порівняно новий підхід високоточного супутникового знімання забезпечує різні галузі наук про Землю найповнішою інформацією про стан океану та його зміни в часі, яку використовують, зокрема в наукових дослідженнях геодезії, океанографії та кліматології. Моделі динамічної топографії океану основані головно на даних альтиметрії. Методика. Методика грунтується на інверсії висот поверхні моря або визначення залишкових SAg аномалій сили тяжіння за залишковими висотами геоїда, 8С, виконується також у межах процедури видалення-відновлення та засновується на оберненій формулі Молоденського і фундаментальному співвідношенні фізичної геодезії, записаному через висоти геоїда. З появою супутникових технологій поверхня Світового океану картографується з рівнем точності в 1-5 см за допомогою дуже простого методу, який базується на альтиметричних вимірах різних супутникових місій. Виміри відстані від бортового супутникового альтиметра до океанічної поверхні та визначення його положення в просторі на основі SLR, GNSS, або DORIS-технологій відкриває можливість обчислення висот SSH (Sea Surface Heights) поверхні океану над прийнятим референц-еліпсоїдом. За попереднього опрацювання даних SSH за рахунок введення поправок за вплив середовища та різноманітних геофізичних факторів до вихідної інформації, які залежать від часу, в результаті чого обчислюються скореговані висоти рівня океану CorSSH. Серед останніх особливо слід виділити найвпливовіші поправки, які пов’язані з припливним ефектом Сонця і Місяця. Ці ефекти поділено на дві частини: океанічний приплив і приплив твердої Землі. Океанічний приплив являє собою відхилення миттєвої океанічної поверхні відносно її середнього значення. Середньою поверхнею може бути, наприклад, поверхня, яка визначена за даними спостережень мареографів. Поправка за припливи твердої Землі пов’язана головно з класичними деформаціями еластичної Землі і вміщує прямий та непрямий ефекти. Незбурена поверхня океану названа геоїдом, або основною рівневою поверхнею, і є однією з найважливіших референцних поверхонь у науках про Землю. При цьому до 1983 р. в обчисленні геоїда не брали до уваги будь-які ефекти, пов’язані з припливами. У 1983 р. згідно з резолюцією IAG поверхню геоїда стали будувати з врахуванням непрямого припливу твердої Землі. Наукова новизна і практична значущість. Амплітуда висот геоїда, побудованого за даними CorSSH, відносно загальноземного еліпсоїда GRS80, не перевищує значень ±100 м. Інша ситуація спостерігається в океанографії, де найціннішими даними стають відхилення рівня океану від геоїда, які отримали назву висот топографії моря SST (Sea Surface Topography) з амплітудою ±2 м. Результати. За останні два роки основні моделі гравітаційного поля Землі побудовані за даними супутника GOCE, як правило, до 250 степеня\порядку. На основі цих моделей GOCE, застовуючи процедуру видалення-відновлення, в роботі розглянуто та вирішено задачі побудови висот SSH за фільтрованими, поля висот аномалій сили тяжіння, побудова гравіметричного квазігеоїда та обчислення стаціонарної моделі топографії моря. Цель работы заключается в разработке методики решения основной задачи геодезии на акваториях путем использования данных спутниковой альтиметрии, а именно - определение стационарной топографии Мирового океана относительно геоида.Метод спутниковой альтиметрии как относительно новый подход высокоточного спутниковой съемки, который обеспечивает различные области наук о Земле наиболее полной информации о состоянии океана и его изменения во времени, которая используется, в частности, в научных исследованиях геодезии, океанографии и климатологии. Модели динамической топографии океана базируются главным образом на данных альтиметрии. Методика. Методика базируется на инверсии высот поверхности моря или определения окончательных аномалий силы тяжести за окончательными высотами геоида выполняется также в рамках процедуры удаления-обновления и основывается на обратной формуле Молоденского и фундаментальном соотношению физической геодезии, записанном через высоты геоида. С появлением спутниковых технологий поверхность Мирового океана картографируемого с уровнем точности в 1-5 см с помощью очень простого метода, который базируется на альтиметрических измерениях различных спутниковых миссий. Измерения расстояния от бортового спутникового альтиметра к океанической поверхности и определения его положения в пространстве на основе SLR, GNSS, или DORIS технологий открывает возможность вычисления высот SSH (Sea Surface Heights) поверхности океана над принятым референи-эллипсоидом. При предварительной обработке данных SSH за счет введения поправок за влияние среды и различных геофизических факторов к исходной информации, которые зависят от времени, в результате чего вычисляются скорректированы высоты уровня океана CorSSH. Среди последних особо следует выделить наиболее влиятельные поправки, связанные с приточным эффектом Солнца и Луны. Эти эффекты делятся на две части: океанический прилив и приток твердой Земли. Океанический прилив представляет собой отклонение мгновенной океанической поверхности относительно ее среднего значения. Средней поверхностью может быть, например, поверхность, которая определена по данным наблюдений мареографа. Поправка за приливы твердой Земли связана главным образом с классическими деформациями эластичной Земли и включает прямой и косвенный эффекты. Невозмущенная поверхность океана была названа геоидом или основной уровневой поверхностью и является одной из наиболее важных референцных поверхностей в науках о Земле. При этом к 1983 при исчислении геоида не принимали во внимание любые эффекты, связанные с приливами. В 1983 согласно резолюции IAG поверхность геоида стали строить с учетом косвенного притока твердой Земли. Практическая значимость. Амплитуда высот геоида, построенного по данным CorSSH относительно общеземного эллипсоида GRS80, не превышает значений ±100 м. Другая ситуация наблюдается в океанографии, где наиболее ценными данными становятся отклонения уровня океана от геоида, которые получили название высот топографии моря SST (Sea Surface Topography) с амплитудой ±2 м. Результаты. За последние два года основные модели гравитационного поля Земли построены по данным спутника GOCE, как правило до 250 степень \ порядке. На основе этихмоделей GOCE, применяя процедуру удаления-восстановления, в работе рассмотрены и решены задачи построения высот SSH по фильтруемым, поля высот аномалий силы тяжести, построение гравиметрического квазигеоида и вычисления стационарной модели топографии моря. The method of satellite altimetry as a relatively new approach to precise satellite surveying, which provides the different Earth sciences by a most complete information about the state of the ocean and its changes over time. In particular this method uses in scientific researches of geodesy, oceanography and climatology. The models of ocean dynamic topography are based on the altimetry data also. Methodology. With the modern of satellite technology the oceans surface is mapped with a very simple approach, which are based on altimetric satellite measurements of different missions with the level of accuracy 1-5 cm. Distance measuring from altimetry satellite to the ocean surface and determining its position in the space based on SLR, GNSS, or DORIS technologies open the possibility of calculating the Sea Surface Heights passed over the ocean surface reference ellipsoid. Heights of the ocean CorSSH are estimated based on the previous SSH data processing. Which are govered by different corrections for the environment and the impact of various geophysical factors to initial dependent time information. These corrections the most impact is caused by the tidal effect of the Sun and the Moon. Tidel effects consist to from two parts: the ocean tide and the tide of the solid Earth. The ocean tide is an instant deviation of the ocean surface relative to its average value. The middle surface, for example, can be the surface which is defined according to observations of a tide gauge. Undisturbed ocean surface was named the geoid or primary level surface and is one of the most important referential surfaces in geosciences. In 1983 according to the resolution of IAG the geoid surface was constract taking into account indirect tides of the solid Earth. The practical significance. The amplitudes of the geoid heights have obtain using to CorSSH as with respect to GRS80 system are not more than ±100 m. Another situation occurs in the oceanography, where the most valuable data are ocean surface deviations from geoid with the amplitude of ±2 m this data are called Sea Surface Topography (SST). Results. Thus, this paper focuses on the problem of constraction filtered heights SSH, field heights gravity anomalies, construction and calculation gravimetric quasigeoid, calculation of the stationary model of the sea topography (SST). In all cases the procedure of remove/restore was edopted based on the atellite-only GOCE gravitational field up to degree \ order 250.
  • Thumbnail Image
    Item
    Метод швидкого перетворення Фур’є в аналізі гравітаційного поля Землі в Антарктичному регіоні
    (Видавництво Львівської політехніки, 2012) Марченко, Д. О.
    Розглянуто метод швидкого перетворення Фур'є (FFT), який суттєво економить час при обробці великих масивів даних завдяки підсумуванню у спектральній області замість множення у просторовій. За даними космічної, аеро-, наземної та морської гравіметрії побудовано просторовий розподіл аномалій сили тяжіння на територію Антарктичного регіону по рівномірній сітці 2 ′2 ′ та введено топографічну редукцію . За допомогою FFT-методу розроблено регіональну модель квазігеоїда Антарктичного континенту та прилеглих акваторій. Рассмотрен метод быстрого преобразования Фурье (FFT), который значительно экономит время при обработке больших массивов данных благодаря суммированию в спектральной области вместо перемножения в пространственной. По данным космической, аэро -, наземной и морской гравиметрии построено пространственное распределение аномалий силы тяжести на территорию Антарктического региона по равномерной сетке 2′2′ и введена топографическая редукция. С помощью FFT-метода построена региональная модель квазигеоида Антарктического континента и прилегающих акваторий. Fast Fourier transformation (FFT) wa s considered which substantially sa ves time when processing large data arrays due to the summation in the spectral domain instead of the multiplication in the space ones. With using of space, aerial, terrestrial and marine gravimetric data the spatial di stribution of gravity anomalies in Antarctic region territory on a uniform grid 2 ′2′ was constructed and a terrain correction was in troduced. Using of FFT- method the regional model of quasigeoid of Anta rctic continent and adjoining water areas was constructed.