Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Моделювання режимів роботи вітрових енергетичних установок у гібридних системах електропостачання
    (Видавництво Львівської політехніки, 2023-02-28) Медиковський, М. О.; Мельник, Р. В.; Мельник, М. В.; Medykovskyy, M. O.; Melnyk, R. V.; Melnyk, M. V.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Представлено сучасні схеми організації вітро-сонячних систем електропостачання. Наведено наявні підходи до управління енергодинамічними режимами роботи вітряних електричних установок у складі гібридних систем електропостачання, наведено сучасні дослідження з даної тематики. Представлено результати розроблення математичної моделі енергодинамічних процесів гібридної вітро-сонячної системи електропостачання, до складу якої входять вітряні електричні установки, сонячні панелі, акумулюючий елемент. Обґрунтовано універсальну структурну схему такої системи. Розроблено набір продукційних правил реалізації управління гібридною системою енергопостачання та імітаційну модель енергодинамічних процесів для можливих режимів роботи системи. Імітаційна модель розроблена на мові програмування Java в середовищі IntelliJ IDEA з використанням фреймворків Spring і Hibernate, а також реляційної бази даних PostgresDB. Проведено імітаційне моделювання роботи системи з метою визначення оптимальних режимів роботи, залежно від обмежень на кількість комутацій кожної із вітрових електричних установок, структури системи та параметрів її елементів. Вхідними даними для дослідження режимів роботи є вітровий і сонячний енергетичний потенціал у заданій географічній точці, кількість і технічні параметри вітрових електричних установок і сонячних панелей, а також параметри акумулюючого елемента. З метою зменшення кількості комутацій (включення/виключення) вітрових електричних установок у складі гібридної системи електропостачання введено параметр “мінімальний інтервал між послідовними змінами активного складу ВЕС”. Результатом імітаційного моделювання є встановлення залежностей: часу підтримки споживача від ймовірності втрати живлення (DPSP); мінімального інтервалу між послідовними змінами активного складу ВЕС від кількості комутацій; мінімального інтервалу між послідовними змінами активного складу ВЕС від середнього відхиленням потужності генерування. Отримані результати дадуть змогу оптимізувати параметри та режими роботи гібридних вітро-сонячних систем, а також алгоритми управління енергодинамічними режимами при проектуванні та експлуатації систем.
  • Thumbnail Image
    Item
    Нейромережевий метод визначення активного складу вітрової електричної станції
    (Видавництво Львівської політехніки, 2020-03-01) Медиковський, Микола; Мельник, Роман; Дубчак, Максим; Medykovskyi, Mykola; Melnyk, Roman; Dubchak, Maxim; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    У статті подано результати дослідження можливостей застосування нейронних мереж для розв’язання задачі визначення активного складу вітрової електричної станції (ВЕС) з врахуванням коефіцієнта ефективності кожної вітроелектричної установки (ВЕУ). Здійснено порівняльний аналіз отриманих результатів з відомими методами визначення активного складу ВЕС, такими як: метод динамічного програмування; метод динамічного програмування із обґрунтованим підвищенням заданого навантаження; модифікований метод динамічного програмування. Визначено переваги та недоліки використання кожного з досліджуваних методів, щодо можливості досягнення заданої потужності генерації при максимальному коефіцієнті ефективності вибраних ВЕУ. Встановлено, що при використанні рекурентних нейронних мереж для розв’язання задачі визначення активного складу ВЕС, мінімальний лінійний коефіцієнт варіації різниці між потужністю, яку необхідно генерувати, та реальною потужністю визначеного активного складу ВЕС становить 2,7 %. За тих самих умов застосування інших відомих методів, зокрема модифікованого методу динамічного програмування, забезпечує досягнення цього параметра на рівні 0,05 %. При цьому час розв’язання задачі суттєво збільшується. Шляхом комп’ютерного моделювання встановлено, що за рівних умов час розв’язання задачі за допомогою нейронних мереж – 0,04 с, а за допомогою модифікованого методу динамічного програмування – 3,4 с. Отримані результати забезпечують можливість реалізації ефективних систем підтримки прийняття рішень при управлінні енергетичними потоками.