Ukrainian Journal of Information Technology
Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/56854
Browse
Item Стекінг нейроподібної структури МПГП з RBF шаром на підставі генерування випадкового кортежу її гіперпараметрів для завдань прогнозування(Видавництво Львівської політехніки, 2021-10-10) Ткаченко, Р. О.; Ізонін, І. В.; Данилик, В. М.; Михалевич, В. Ю.; Tkachenko, R. O.; Izonin, I. V.; Danylyk, V. M.; Mykhalevych, V. Yu.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityПідвищення точності прогнозування засобами штучного інтелекту є важливим завданням у різних галузях промисловості, економіки, медицини. Ансамблеве навчання – один із можливих варіантів досягнення цього. Зокрема, побудова стекінгових моделей на підставі різних методів машинного навчання чи з використанням різних частин наявного набору даних демонструє високу точність прогнозу. Проте потреба правильного підбору членів ансамблю, їх оптимальних параметрів тощо зумовлює необхідність великих часових витрат на підготовку та навчання таких моделей. В роботі запропоновано дещо інший підхід до побудови простого, проте ефективного ансамблевого методу. Розроблено нову модель стекінгу нелінійних нейроподібних структур МПГП, основану на використанні тільки одного типу ШНМ як елементної бази ансамблю та застосуванні однакової для усіх членів ансамблю навчальної вибірки. Такий підхід забезпечує певні переваги порівняно з процедурами побудови ансамблів на підставі різних методів машинного навчання, як мінімум у напрямі підбору оптимальних параметрів для кожного з них. Як основу ансамлювання в нашому випадку використано кортеж випадкових гіперпараметрів для кожного окремого члена ансамблю, тобто навчання кожної комбінованої нейроподібної структури МПГП з додатковим RBF шаром як окремого члена ансамблю здійснюється із використанням різних, випадково вибраних значень центрів RBF та центрів мас. Це забезпечує необхідне різноманіття елементів ансамблю. Експериментальні дослідження щодо ефективності роботи запропонованого ансамблю проведено із використанням реального набору даних. Завдання полягає у прогнозуванні величини медичних страхових виплат на підставі низки незалежних атрибутів. Експериментально визначено оптимальну кількість членів ансамблю, яка забезпечує найвищу точність розв’язання поставленої задачі. Здійснено порівняння результатів роботи запропонованого ансамблю з наявними методами цього класу. Встановлено найвищу точність розробленого ансамблю за задовільної тривалості процедури його навчання.