Одновимірна згорткова модель нейронної мережі для оброблення сигналів з амплітудною модуляцією багатьох складових
dc.citation.epage | 111 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Інфокомунікаційні технології та електронна інженерія | |
dc.citation.spage | 102 | |
dc.citation.volume | 4 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Цимбалюк, І. | |
dc.contributor.author | Tsymbaliuk, Ivan | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-17T09:06:31Z | |
dc.date.created | 2024-02-27 | |
dc.date.issued | 2024-02-27 | |
dc.description.abstract | Оброблення радіосигналів з допомогою штучних нейронних мереж (ШНМ) має великий потенціал досліджень, який можна обґрунтувати адаптивністю ШНМ до різних умов передавання та здатністю виявляти абстрактні закономірності зміни параметрів сигналів. У статті проведено огляд робіт інших авторів, присвячених різним способам використання ШНМ для оброблення радіосигналів. Беручи до уваги відомості в оглянутих роботах, було сформовано завдання дослідження, яке полягає в розробленні оптимізованої моделі ШНМ для оброблення радіосигналів. Для формування навчальних вибірок для ШНМ було обрано сигнали з амплітудною модуляцією багатьох складових (АМБС). Вибір обґрунтовано більшою енергетичною ефективністю в порівнянні з іншими широко використовуваними цифровими видами модуляції, такими як квадратурна амплітудна модуляція. Описано математичні основи формування сигналів з АМБС. Наведено співвідношення для знаходження координат сигнального сузір’я 8-АМБС з трьома складовими, формування сигналів у часовій площині на основі знайдених координат, їх дискретизації та додавання білого шуму. Запропоновано ітеративний алгоритм формування начальних даних для ШНМ на основі описаних співвідношень. Розглянуто загальну структуру одновимірних згорткових нейронних мереж. Наведено співвідношення для функцій окремих нейронів, зв’язків між ними, формування шарів та проведення операції згортки. На основі попередньо наведених співвідношень сформовано сумарне відображення мережі. Обрано конкретні розмірності та функції активації для шарів. Використання згорткових шарів обґгрунтовано інваріантністю щодо зсуву. На основі наведених співвідношень, обраних функцій активації та розмірностей сформовано нейронну модель. Описано процес валідації ефективності сформованої нейронної моделі, який полягає у порівнянні імовірностей символьної помилки запропонованої та еталонної моделей при різних співвідношеннях сигнал-щум. Наведено результати валідації. Пояснено переваги отриманої моделі над раніше запропонованою суто рекурентною моделлю та еталонним приймачем АМБС. | |
dc.description.abstract | The processing of radio signals using artificial neural networks (ANNs) has great potential for research, which can be explained by the adaptability of ANNs to various transmission conditions and the ability to detect abstract patterns of changes in signal parameters. The article reviews the works of other authors devoted to different ways of using ANNs for processing radio signals. Taking into account the information in the reviewed works, the research task was formed, which consists in developing an optimized ANN model for radio signal processing. Signals with amplitude modulation of many components (AMMC) were chosen to form training samples for ANN. The choice of modulation type is justified by greater energy efficiency compared to other widely used digital modulation types, such as quadrature amplitude modulation. Mathematic basis of AMMC signal generation is described. The process of finding the coordinates of three component 8-AMMC signal constellation is explained, the formation of signals in the time plane based on the found coordinates is explained as well as their discretization and the addition of white noise. An iterative algorithm for generating initial data for ANN based on the described ratios is proposed. The general structure of one-dimensional convolutional neural network is considered. Functions of individual neurons, connections between them, the formation of layers and the convolution operation are described mathematically. On the basis of the previously given ratios, a final display of the network was formed. Specific dimensions and activation functions for layers are selected. The use of convolutional layers is justified by time invariance. Based on the reviewed mathematical models, selected activation functions and dimensions, a neural model was formed. The process of validating the effectiveness of the formed neural model is described, which is based on comparing the symbolic error probabilities of the proposed and reference models at different signal-to-noise ratios. The validation results are presented. The advantages of the obtained model over the previously proposed purely recurrent model and the AMMC reference receiver are explained. | |
dc.format.extent | 102-111 | |
dc.format.pages | 10 | |
dc.identifier.citation | Цимбалюк І. Одновимірна згорткова модель нейронної мережі для оброблення сигналів з амплітудною модуляцією багатьох складових / І. Цимбалюк // Інфокомунікаційні технології та електронна інженерія. — Львів : Видавництво Львівської політехніки, 2024. — Том 4. — № 1. — С. 102–111. | |
dc.identifier.citationen | Tsymbaliuk I. One-dimensional convolutional neural network model for processing amplitude modulation on many components signals / Tsymbaliuk Ivan // Infocommunication technologies and electronic engineering. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 4. — No 1. — P. 102–111. | |
dc.identifier.doi | doi.org/10.23939/ictee2024.01.102 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64153 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Інфокомунікаційні технології та електронна інженерія, 1 (4), 2024 | |
dc.relation.ispartof | Infocommunication technologies and electronic engineering, 1 (4), 2024 | |
dc.relation.references | [1]. Xu, S., Li, J., Liu, K., & Wu, L. (2019). A Parallel GRU Recurrent Network Model and its Application to Multi-Channel Time-Varying Signal Classification. IEEE Access, 7, 118739-118748. https://doi.org/10.1109/ACCESS.2019.2936516 | |
dc.relation.references | [2] Huang, B., Lin, C.-L., Chen, W., Juang, C.-F., & Wu, X. (2020). Signal Frequency Estimation Based on RNN. 2020 Chinese Control And Decision Conference (CCDC) (pp. 2030-2034). Hefei, China. https://doi.org/10.1109/CCDC49329.2020.9164504 | |
dc.relation.references | [3] Xian, Y., Pu, Y., Gan, Z., Lu, L., & Thompson, A. (2017). Adaptive DCTNet for audio signal classification. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3999-4003). New Orleans, LA, USA. https://doi.org/10.1109/ICASSP.2017.7952907 | |
dc.relation.references | [4] Liu, Q., Dai, Y., Li, M., Yao, B., Xin, Y., & Zhang, J. (2022). Real-time processing of force sensor signals based on LSTM-RNN. 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 167-171). Jinghong, China. https://doi.org/10.1109/ROBIO55434.2022.10011703 | |
dc.relation.references | [5] Teich, W. G. (2017). Low-power high-speed signal processing: From iterative algorithm to analog circuits. 2017 11th International Conference on Signal Processing and Communication Systems (ICSPCS) (pp. 1-1). Surfers Paradise, Australia. https://doi.org/10.1109/ICSPCS.2017.8270449 | |
dc.relation.references | [6] Vijayamohanan, J., Gupta, A., Noakoasteen, O., & Christodoulou, C. (2021). Convolutional Neural Networks for Radio Source Detection. 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI) (pp. 1491-1492). Singapore, Singapore. https://doi.org/10.1109/APS/URSI47566.2021.9704525 | |
dc.relation.references | [7] Pan, J., Guo, L., Chen, Q., Zhang, S., & Xiong, J. (2022). Specific Radar Emitter Identification Using 1D-CBAM-ResNet. 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP) (pp. 483-488). Nanjing, China. https://doi.org/10.1109/WCSP55476.2022.10039094 | |
dc.relation.references | [8] Rahman, M. H., Sejan, M. A. S., Aziz, M. A., You, Y.-H., & Song, H.-K. (2023). HyDNN: A Hybrid Deep Learning Framework Based Multiuser Uplink Channel Estimation and Signal Detection for NOMA-OFDM System. IEEE Access, 11, 66742-66755. https://doi.org/10.1109/ACCESS.2023.3290217 | |
dc.relation.references | [9] Kiranyaz, S., Ince, T., Abdeljaber, O., Avci, O., & Gabbouj, M. (2019). 1-D Convolutional Neural Networks for Signal Processing Applications. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 8360-8364). Brighton, UK. https://doi.org/10.1109/ICASSP.2019.8682194 | |
dc.relation.references | [10] Shahid, S. M., Ko, S., & Kwon, S. (2022). Performance Comparison of 1D and 2D Convolutional Neural Networks for Real-Time Classification of Time Series Sensor Data. 2022 International Conference on Information Networking (ICOIN) (pp. 507-511). Jeju-si, Korea, Republic of. https://doi.org/10.1109/ICOIN53446.2022.9687284 | |
dc.relation.references | [11] Wang, H., Chong, D., Huang, D., & Zou, Y. (2019). What Affects the Performance of Convolutional Neural Networks for Audio Event Classification. 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW) (pp. 140-146). Cambridge, UK. https://doi.org/10.1109/ACIIW.2019.8925277 | |
dc.relation.references | [12] T. J. O’Shea, T. Roy and T. C. Clancy, "Over-the-Air Deep Learning Based Radio Signal Classification," in IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 168-179, Feb. 2018, https://doi.org/10.1109/JSTSP.2018.2797022 | |
dc.relation.references | [13] Горбатий, І. В. (2013). Нові різновиди модуляції сигналу в цифрових радіорелейних системах передавання. Проблеми телекомунікацій, (2)11, с. 44–55. https://pt.nure.ua/wp-content/uploads/2020/01/132_gorbatyy_modulation.pdf | |
dc.relation.references | [14] Горбатий, І.В., Цимбалюк, І.Р.. (2022). Метод формування вибірок сигналів з амплітудною модуляцією багатьох складових. Інфокомунікаційні та комп’ютерні технології. 2, с. 172 — 181. http://dx.doi.org/10.36994/2788-5518-2021-02-02-12 | |
dc.relation.references | [15] Horbatyi, I., Tsymbaliuk, I. (2022). Neural Network Based Approach for Demodulation of Signals with Amplitude Modulation of Many Components. 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), pp. 114-117. https://doi.org/10.1109/TCSET55632.2022.9766952 | |
dc.relation.referencesen | [1]. Xu, S., Li, J., Liu, K., & Wu, L. (2019). A Parallel GRU Recurrent Network Model and its Application to Multi-Channel Time-Varying Signal Classification. IEEE Access, 7, 118739-118748. https://doi.org/10.1109/ACCESS.2019.2936516 | |
dc.relation.referencesen | [2] Huang, B., Lin, C.-L., Chen, W., Juang, C.-F., & Wu, X. (2020). Signal Frequency Estimation Based on RNN. 2020 Chinese Control And Decision Conference (CCDC) (pp. 2030-2034). Hefei, China. https://doi.org/10.1109/CCDC49329.2020.9164504 | |
dc.relation.referencesen | [3] Xian, Y., Pu, Y., Gan, Z., Lu, L., & Thompson, A. (2017). Adaptive DCTNet for audio signal classification. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3999-4003). New Orleans, LA, USA. https://doi.org/10.1109/ICASSP.2017.7952907 | |
dc.relation.referencesen | [4] Liu, Q., Dai, Y., Li, M., Yao, B., Xin, Y., & Zhang, J. (2022). Real-time processing of force sensor signals based on LSTM-RNN. 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 167-171). Jinghong, China. https://doi.org/10.1109/ROBIO55434.2022.10011703 | |
dc.relation.referencesen | [5] Teich, W. G. (2017). Low-power high-speed signal processing: From iterative algorithm to analog circuits. 2017 11th International Conference on Signal Processing and Communication Systems (ICSPCS) (pp. 1-1). Surfers Paradise, Australia. https://doi.org/10.1109/ICSPCS.2017.8270449 | |
dc.relation.referencesen | [6] Vijayamohanan, J., Gupta, A., Noakoasteen, O., & Christodoulou, C. (2021). Convolutional Neural Networks for Radio Source Detection. 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI) (pp. 1491-1492). Singapore, Singapore. https://doi.org/10.1109/APS/URSI47566.2021.9704525 | |
dc.relation.referencesen | [7] Pan, J., Guo, L., Chen, Q., Zhang, S., & Xiong, J. (2022). Specific Radar Emitter Identification Using 1D-CBAM-ResNet. 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP) (pp. 483-488). Nanjing, China. https://doi.org/10.1109/WCSP55476.2022.10039094 | |
dc.relation.referencesen | [8] Rahman, M. H., Sejan, M. A. S., Aziz, M. A., You, Y.-H., & Song, H.-K. (2023). HyDNN: A Hybrid Deep Learning Framework Based Multiuser Uplink Channel Estimation and Signal Detection for NOMA-OFDM System. IEEE Access, 11, 66742-66755. https://doi.org/10.1109/ACCESS.2023.3290217 | |
dc.relation.referencesen | [9] Kiranyaz, S., Ince, T., Abdeljaber, O., Avci, O., & Gabbouj, M. (2019). 1-D Convolutional Neural Networks for Signal Processing Applications. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 8360-8364). Brighton, UK. https://doi.org/10.1109/ICASSP.2019.8682194 | |
dc.relation.referencesen | [10] Shahid, S. M., Ko, S., & Kwon, S. (2022). Performance Comparison of 1D and 2D Convolutional Neural Networks for Real-Time Classification of Time Series Sensor Data. 2022 International Conference on Information Networking (ICOIN) (pp. 507-511). Jeju-si, Korea, Republic of. https://doi.org/10.1109/ICOIN53446.2022.9687284 | |
dc.relation.referencesen | [11] Wang, H., Chong, D., Huang, D., & Zou, Y. (2019). What Affects the Performance of Convolutional Neural Networks for Audio Event Classification. 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW) (pp. 140-146). Cambridge, UK. https://doi.org/10.1109/ACIIW.2019.8925277 | |
dc.relation.referencesen | [12] T. J. O’Shea, T. Roy and T. C. Clancy, "Over-the-Air Deep Learning Based Radio Signal Classification," in IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 168-179, Feb. 2018, https://doi.org/10.1109/JSTSP.2018.2797022 | |
dc.relation.referencesen | [13] Horbatyi, I. V. (2013). Novi riznovydy moduliatsii syhnalu v tsyfrovykh radioreleinykh systemakh peredavannia. Problemy telekomunikatsii, (2)11, P. 44–55. https://pt.nure.ua/wp-content/uploads/2020/01/132_gorbatyy_modulation.pdf | |
dc.relation.referencesen | [14] Horbatyi, I.V., Tsymbaliuk, I.R.. (2022). Metod formuvannia vybirok syhnaliv z amplitudnoiu moduliatsiieiu bahatokh skladovykh. Infokomunikatsiini ta kompiuterni tekhnolohii. 2, P. 172 - 181. http://dx.doi.org/10.36994/2788-5518-2021-02-02-12 | |
dc.relation.referencesen | [15] Horbatyi, I., Tsymbaliuk, I. (2022). Neural Network Based Approach for Demodulation of Signals with Amplitude Modulation of Many Components. 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), pp. 114-117. https://doi.org/10.1109/TCSET55632.2022.9766952 | |
dc.relation.uri | https://doi.org/10.1109/ACCESS.2019.2936516 | |
dc.relation.uri | https://doi.org/10.1109/CCDC49329.2020.9164504 | |
dc.relation.uri | https://doi.org/10.1109/ICASSP.2017.7952907 | |
dc.relation.uri | https://doi.org/10.1109/ROBIO55434.2022.10011703 | |
dc.relation.uri | https://doi.org/10.1109/ICSPCS.2017.8270449 | |
dc.relation.uri | https://doi.org/10.1109/APS/URSI47566.2021.9704525 | |
dc.relation.uri | https://doi.org/10.1109/WCSP55476.2022.10039094 | |
dc.relation.uri | https://doi.org/10.1109/ACCESS.2023.3290217 | |
dc.relation.uri | https://doi.org/10.1109/ICASSP.2019.8682194 | |
dc.relation.uri | https://doi.org/10.1109/ICOIN53446.2022.9687284 | |
dc.relation.uri | https://doi.org/10.1109/ACIIW.2019.8925277 | |
dc.relation.uri | https://doi.org/10.1109/JSTSP.2018.2797022 | |
dc.relation.uri | https://pt.nure.ua/wp-content/uploads/2020/01/132_gorbatyy_modulation.pdf | |
dc.relation.uri | http://dx.doi.org/10.36994/2788-5518-2021-02-02-12 | |
dc.relation.uri | https://doi.org/10.1109/TCSET55632.2022.9766952 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.subject | Амплітудна модуляція багатьох складових (АМБС) | |
dc.subject | штучні нейронні мережі(ШНМ) | |
dc.subject | згорткові нейронні мережі | |
dc.subject | Amplitude modulation of many components (AMMC) | |
dc.subject | artificial neural network (ANN) | |
dc.subject | convolutional neural network (CNN) | |
dc.subject.udc | 621.126 | |
dc.title | Одновимірна згорткова модель нейронної мережі для оброблення сигналів з амплітудною модуляцією багатьох складових | |
dc.title.alternative | One-dimensional convolutional neural network model for processing amplitude modulation on many components signals | |
dc.type | Article |
Files
License bundle
1 - 1 of 1