Analysis of the impact of cross-section damage on the strength and deformability of bent reinforced concrete elements

dc.citation.epage27
dc.citation.issue2
dc.citation.journalTitleТеорія та будівельна практика
dc.citation.spage19
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКравчук, В. С.
dc.contributor.authorВегера, П. І.
dc.contributor.authorХміль, Р. Є.
dc.contributor.authorKravchuk, Volodymyr
dc.contributor.authorVegera, Pavlo
dc.contributor.authorKhmil, Roman
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-04T09:42:47Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractУ статті аналізуються дефекти та пошкодження залізобетонних конструкцій, зокрема фізичні, біологічні та хімічні, з акцентом на вплив тривалої експлуатації та агресивних умов навколишнього середовища. Дослідження показують, що механічні пошкодження, такі як відколи та вибоїни, значно знижують несучу здатність конструкцій та спричиняють складні деформації. Визначено актуальні напрямки наукових досліджень, зокрема щодо поведінки пошкоджених залізобетонних балок під навантаженням, які потребують подальшого розвитку та вдосконалення методів оцінки залишкової несучої здатності. У статті наголошується на необхідності додаткових експериментальних досліджень та використання сучасного програмного забезпечення для більш точних методів прогнозування та розрахунку залізобетонних конструкцій.
dc.description.abstractThe article analyzes defects and damage in reinforced concrete structures, particularly physical, biological, and chemical, with an emphasis on the impact of prolonged operation and aggressive environmental conditions. Research shows that mechanical damage, such as spalling and potholes, significantly reduces the load-bearing capacity of structures and causes complex deformations. Relevant directions in scientific research have been identified, particularly regarding the behavior of damaged reinforced concrete beams under load, which require further development and improvement of methods for assessing residual load-bearing capacity. The article emphasizes the need for additional experimental studies and the use of modern software for more accurate methods of predicting and calculating reinforced concrete structures.
dc.format.extent19-27
dc.format.pages9
dc.identifier.citationKravchuk V. Analysis of the impact of cross-section damage on the strength and deformability of bent reinforced concrete elements / Volodymyr Kravchuk, Pavlo Vegera, Roman Khmil // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 19–27.
dc.identifier.citationenKravchuk V. Analysis of the impact of cross-section damage on the strength and deformability of bent reinforced concrete elements / Volodymyr Kravchuk, Pavlo Vegera, Roman Khmil // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 19–27.
dc.identifier.doidoi.org/10.23939/jtbp2024.02.019
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/117197
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofТеорія та будівельна практика, 2 (6), 2024
dc.relation.ispartofTheory and Building Practice, 2 (6), 2024
dc.relation.referencesSurianinov, M., Neutov, S., & Yesvandzhyia, V. (2023). Bearing capacity of a beam damaged during combat actions strengthened with the use of fiber concrete. Spatial development, 5, 212-222. https://doi.org/10.32347/2786-7269.2023.5.212-222
dc.relation.referencesBlikharskyy, Y., & Kopiika, N. (2022). Аnalysis of the most common damages in reinforced concrete structures: a review. Theory and Building Practice, 4(1), 35-42. https://doi.org/10.23939/jtbp2022.01.035
dc.relation.referencesMykhalevskyi, N. A., Vegera, P. І., & Blikharskyi, Z. Y. (2023). The influence of damage to reinforced concrete beams on strength and deformability: the review. Theory and Building Practice, 5(1), 112-119. https://doi.org/10.23939/jtbp2023.01.112
dc.relation.referencesKlymenko, Ye. V., & Oreshkovych, М. (2013). On the Study of the Compressed Damaged Reinforced Concrete Elements of Circular Cross-Section. Theory and building practice, 755, 173-178. https://scien-ce.lpnu.ua/sctp/all-volumes-and-issues/volume-755-2013-1/do-pitannya-vivchennya-roboti-stisnutih-poshkodzhenih
dc.relation.referencesHait, P., Arjun, S., & Satyabrata, Ch. (2018). Quantification of damage to RC structures: A comprehensive review. Disaster Advances, 11(12), 41-59. https://www.academia.edu/39813716/Quantification_of_damage_to_RC_Structures_A_Comprehensive_review
dc.relation.referencesKrasnitskyi, P., Lobodanov, M., & Blikharskyy Z. (2024). Аnalysis of software packages applying in the investigation of the damage effect to reinforced concrete beams on strength and deformability: the review. Theory and Building Practice, 6(1), 61-68. https://doi.org/10.23939/jtbp2024.01.061
dc.relation.referencesKlymenko, Ye. V., & Polianskyi, K. V. (2019). Experimental investigation of the stress-strain state of damaged reinforced concrete beams. Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 76, 24-30. https://doi.org/10.31650/2415-377X-2019-76-24-30
dc.relation.referencesPavlikov, A.M., Harkava, O.V., Hasenko, A.V., & Andriiets, K.I. (2019). Comparative analysis of numerical simulation results of work of biaxially bended reinforced concrete beams with experimental data. Building construction: Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 77, 84-92. https://doi.org/10.31650/2415-377X-2019-77-84-92
dc.relation.referencesKlymenko,Ye.V., Antoniuk, N.R., & Polianskyi, K.V. (2019). Modeling the work of damaged reinforced concrete beams in the SC "LIRA-SAPR". Bulletin of the Odessa State Academy of Construction and Architecture, 77, 58-65. http://dx.doi.org/10.31650/2415-377X-2019-77-58-65
dc.relation.referencesMykhalevskyi, N.A., Vegera, P.І., & Blikharskyy, Z.Y. (2023). Analysis of the effect of uneven damage of reinforced concrete beam using the FEMAP software package. Modern construction and architecture, 6, 54-61. http://visnyk-odaba.org.ua/2023-06/6-6.pdf
dc.relation.referencesDeineka, V., Vegera, P., & Blikharskyy, Z. (2024). Simulation influence of uneven damage of reinforced concrete beam in LIRA-FEM. Theory and Building Practice, 6(1), 130-140. https://doi.org/10.23939/jtbp2024.01.130
dc.relation.referencesVoskobiinyk, O.P, Kitaiev O.O., Makarenko Ya.V., & Buhaienko Ye.S. (2011). Experimental investigation of reinforced concrete beams with defects and damages that cause the skew bending. Academic journal. Industrial Machine Building, Civil Engineering, 1(29), 87-92. https://reposit.nupp.edu.ua/handle/PoltNTU/8074
dc.relation.referencesPavlikov, A.M., Harkava, O. V., & Barylyak, B.A. (2019). Determination of reinforced concrete columns strength after operational damage. Bulletin of the Odessa State Academy of Civil Engineering and Architecture: Building Structures, 76, 70-77. https://reposit.nupp.edu.ua/handle/PoltNTU/7585
dc.relation.referencesLobodanov, M. M., Vegera, P. І., & Blikharskyy, Z.Y. (2021). Investigation of the influence of damage of the compressed concrete zone in bending rectangular reinforced concrete elements with insufficient reinforcement. Bulletin of the Odessa State Academy of Civil Engineering and Architecture: Building Structures, 82, 47-55. http://visnyk-odaba.org.ua/2021-82/82-5.pdf
dc.relation.referencesLobodanov, M. M., Vegera, P. І., & Blikharskyy, Z.Y. (2018). Analysis of influence of main types of defects and damage on the bearing capasity of reinforced concrete elements. Bulletin of the National University "Lviv Polytechnic": Theory and Practice of Construction, 888, 93-100. https://science.lpnu.ua/uk/node/14929
dc.relation.referencesBlikharskyy, Z. Z., Vegera, P. І., Shnal, T.M. (2018). Іnfluence of defects of the working rebar on the bearing capacity of the reinforced concrete beams. Bulletin of the National University "Lviv Polytechnic":Theory and Practice of Construction, 888, 12-17. https://doi.org/10.2478/czoto-2019-0036
dc.relation.referencesShmyh, R. (2017). Mathematical simulation of the stressed-deformed condition of reinforced concrete beams in simultaneous influence of aggressive environment and loading. Econtechmod: An International Quarterly Journal, 6(3), 39-44. https://doi.org/10.31734/architecture2017.18.019
dc.relation.referencesBonić, Z., Savić, J., Topličić-Ćurčić, G., & Davidoć, N. (2015). Damage of Concrete and Reinforcement of Reinforced-Concrete Foundations Caused by Environmental Effects. Procedia Engineering, 117, 411-418. https://doi.org/10.1016/j.proeng.2015.08.187
dc.relation.referencesBlikharskyy, Z., Selejdak, J., Blikharskyy, Y., & Khmil, R. (2019). Corrosion of reinforce bars in RC constructions. System Safety: Human-Technical Facility-Environment, 1(1), 277-283. https://doi.org/10.2478/czoto-2019-0036
dc.relation.referencesSantos, J., & Henriques, A. (2021). Rotation capacity of corroded RC beams with special ductility tempcore rebars. Engineering Structures, 236(1), 112138. https://doi.org/10.1016/j.engstruct.2021.112138
dc.relation.referencesRoyani, A., Prifiharni, S., Priyotomo, G., & Sundjono, S. (2021). Corrosion rate and corrosion behaviour analysis of carbon steel pipe at constant condensed fluid. Metallurgical and Materials Engineering, 27(4), 519-530. https://doi.org/10.30544/591
dc.relation.referencesXia, J., Wei-liang, J., & Li, L. (2011). Shear performance of reinforced concrete beams with corroded stirrups in chloride environment. Corrosion Science, 53(5), 1794-1805. https://doi.org/10.1016/j.corsci.2011.01.058
dc.relation.referencesAl-Saidy, A. H., Al-Harthy, A. S., Al-Jabri, K. S., Abdul-Halim, M., & Al-Shidi, N. M. (2010). Structural performance of corroded RC beams repaired with CFRP sheets. Composite Structures, 92, 1931-1938. https://doi.org/10.1016/j.compstruct.2010.01.001
dc.relation.referencesZhu, W., & François, R. (2013). Effect of corrosion pattern on the ductility of tensile reinforcement extracted from a 26-year-old corroded beam. Advances in Concrete Construction, 1(2), 121-136. https://doi.org/10.12989/acc2013.01.2.121
dc.relation.referencesLu, Z.-H., Li, H., Li, W., Zhao, Y.-G., & Dong, W. (2018). An empirical model for the shear strength of corroded reinforced concrete beam. Construction and Building Materials, 188, 1234-1248. https://doi.org/10.1016/j.conbuildmat.2018.08.123
dc.relation.referencesenSurianinov, M., Neutov, S., & Yesvandzhyia, V. (2023). Bearing capacity of a beam damaged during combat actions strengthened with the use of fiber concrete. Spatial development, 5, 212-222. https://doi.org/10.32347/2786-7269.2023.5.212-222
dc.relation.referencesenBlikharskyy, Y., & Kopiika, N. (2022). Analysis of the most common damages in reinforced concrete structures: a review. Theory and Building Practice, 4(1), 35-42. https://doi.org/10.23939/jtbp2022.01.035
dc.relation.referencesenMykhalevskyi, N. A., Vegera, P. I., & Blikharskyi, Z. Y. (2023). The influence of damage to reinforced concrete beams on strength and deformability: the review. Theory and Building Practice, 5(1), 112-119. https://doi.org/10.23939/jtbp2023.01.112
dc.relation.referencesenKlymenko, Ye. V., & Oreshkovych, M. (2013). On the Study of the Compressed Damaged Reinforced Concrete Elements of Circular Cross-Section. Theory and building practice, 755, 173-178. https://scien-ce.lpnu.ua/sctp/all-volumes-and-issues/volume-755-2013-1/do-pitannya-vivchennya-roboti-stisnutih-poshkodzhenih
dc.relation.referencesenHait, P., Arjun, S., & Satyabrata, Ch. (2018). Quantification of damage to RC structures: A comprehensive review. Disaster Advances, 11(12), 41-59. https://www.academia.edu/39813716/Quantification_of_damage_to_RC_Structures_A_Comprehensive_review
dc.relation.referencesenKrasnitskyi, P., Lobodanov, M., & Blikharskyy Z. (2024). Analysis of software packages applying in the investigation of the damage effect to reinforced concrete beams on strength and deformability: the review. Theory and Building Practice, 6(1), 61-68. https://doi.org/10.23939/jtbp2024.01.061
dc.relation.referencesenKlymenko, Ye. V., & Polianskyi, K. V. (2019). Experimental investigation of the stress-strain state of damaged reinforced concrete beams. Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 76, 24-30. https://doi.org/10.31650/2415-377X-2019-76-24-30
dc.relation.referencesenPavlikov, A.M., Harkava, O.V., Hasenko, A.V., & Andriiets, K.I. (2019). Comparative analysis of numerical simulation results of work of biaxially bended reinforced concrete beams with experimental data. Building construction: Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 77, 84-92. https://doi.org/10.31650/2415-377X-2019-77-84-92
dc.relation.referencesenKlymenko,Ye.V., Antoniuk, N.R., & Polianskyi, K.V. (2019). Modeling the work of damaged reinforced concrete beams in the SC "LIRA-SAPR". Bulletin of the Odessa State Academy of Construction and Architecture, 77, 58-65. http://dx.doi.org/10.31650/2415-377X-2019-77-58-65
dc.relation.referencesenMykhalevskyi, N.A., Vegera, P.I., & Blikharskyy, Z.Y. (2023). Analysis of the effect of uneven damage of reinforced concrete beam using the FEMAP software package. Modern construction and architecture, 6, 54-61. http://visnyk-odaba.org.ua/2023-06/6-6.pdf
dc.relation.referencesenDeineka, V., Vegera, P., & Blikharskyy, Z. (2024). Simulation influence of uneven damage of reinforced concrete beam in LIRA-FEM. Theory and Building Practice, 6(1), 130-140. https://doi.org/10.23939/jtbp2024.01.130
dc.relation.referencesenVoskobiinyk, O.P, Kitaiev O.O., Makarenko Ya.V., & Buhaienko Ye.S. (2011). Experimental investigation of reinforced concrete beams with defects and damages that cause the skew bending. Academic journal. Industrial Machine Building, Civil Engineering, 1(29), 87-92. https://reposit.nupp.edu.ua/handle/PoltNTU/8074
dc.relation.referencesenPavlikov, A.M., Harkava, O. V., & Barylyak, B.A. (2019). Determination of reinforced concrete columns strength after operational damage. Bulletin of the Odessa State Academy of Civil Engineering and Architecture: Building Structures, 76, 70-77. https://reposit.nupp.edu.ua/handle/PoltNTU/7585
dc.relation.referencesenLobodanov, M. M., Vegera, P. I., & Blikharskyy, Z.Y. (2021). Investigation of the influence of damage of the compressed concrete zone in bending rectangular reinforced concrete elements with insufficient reinforcement. Bulletin of the Odessa State Academy of Civil Engineering and Architecture: Building Structures, 82, 47-55. http://visnyk-odaba.org.ua/2021-82/82-5.pdf
dc.relation.referencesenLobodanov, M. M., Vegera, P. I., & Blikharskyy, Z.Y. (2018). Analysis of influence of main types of defects and damage on the bearing capasity of reinforced concrete elements. Bulletin of the National University "Lviv Polytechnic": Theory and Practice of Construction, 888, 93-100. https://science.lpnu.ua/uk/node/14929
dc.relation.referencesenBlikharskyy, Z. Z., Vegera, P. I., Shnal, T.M. (2018). Influence of defects of the working rebar on the bearing capacity of the reinforced concrete beams. Bulletin of the National University "Lviv Polytechnic":Theory and Practice of Construction, 888, 12-17. https://doi.org/10.2478/czoto-2019-0036
dc.relation.referencesenShmyh, R. (2017). Mathematical simulation of the stressed-deformed condition of reinforced concrete beams in simultaneous influence of aggressive environment and loading. Econtechmod: An International Quarterly Journal, 6(3), 39-44. https://doi.org/10.31734/architecture2017.18.019
dc.relation.referencesenBonić, Z., Savić, J., Topličić-Ćurčić, G., & Davidoć, N. (2015). Damage of Concrete and Reinforcement of Reinforced-Concrete Foundations Caused by Environmental Effects. Procedia Engineering, 117, 411-418. https://doi.org/10.1016/j.proeng.2015.08.187
dc.relation.referencesenBlikharskyy, Z., Selejdak, J., Blikharskyy, Y., & Khmil, R. (2019). Corrosion of reinforce bars in RC constructions. System Safety: Human-Technical Facility-Environment, 1(1), 277-283. https://doi.org/10.2478/czoto-2019-0036
dc.relation.referencesenSantos, J., & Henriques, A. (2021). Rotation capacity of corroded RC beams with special ductility tempcore rebars. Engineering Structures, 236(1), 112138. https://doi.org/10.1016/j.engstruct.2021.112138
dc.relation.referencesenRoyani, A., Prifiharni, S., Priyotomo, G., & Sundjono, S. (2021). Corrosion rate and corrosion behaviour analysis of carbon steel pipe at constant condensed fluid. Metallurgical and Materials Engineering, 27(4), 519-530. https://doi.org/10.30544/591
dc.relation.referencesenXia, J., Wei-liang, J., & Li, L. (2011). Shear performance of reinforced concrete beams with corroded stirrups in chloride environment. Corrosion Science, 53(5), 1794-1805. https://doi.org/10.1016/j.corsci.2011.01.058
dc.relation.referencesenAl-Saidy, A. H., Al-Harthy, A. S., Al-Jabri, K. S., Abdul-Halim, M., & Al-Shidi, N. M. (2010). Structural performance of corroded RC beams repaired with CFRP sheets. Composite Structures, 92, 1931-1938. https://doi.org/10.1016/j.compstruct.2010.01.001
dc.relation.referencesenZhu, W., & François, R. (2013). Effect of corrosion pattern on the ductility of tensile reinforcement extracted from a 26-year-old corroded beam. Advances in Concrete Construction, 1(2), 121-136. https://doi.org/10.12989/acc2013.01.2.121
dc.relation.referencesenLu, Z.-H., Li, H., Li, W., Zhao, Y.-G., & Dong, W. (2018). An empirical model for the shear strength of corroded reinforced concrete beam. Construction and Building Materials, 188, 1234-1248. https://doi.org/10.1016/j.conbuildmat.2018.08.123
dc.relation.urihttps://doi.org/10.32347/2786-7269.2023.5.212-222
dc.relation.urihttps://doi.org/10.23939/jtbp2022.01.035
dc.relation.urihttps://doi.org/10.23939/jtbp2023.01.112
dc.relation.urihttps://scien-ce.lpnu.ua/sctp/all-volumes-and-issues/volume-755-2013-1/do-pitannya-vivchennya-roboti-stisnutih-poshkodzhenih
dc.relation.urihttps://www.academia.edu/39813716/Quantification_of_damage_to_RC_Structures_A_Comprehensive_review
dc.relation.urihttps://doi.org/10.23939/jtbp2024.01.061
dc.relation.urihttps://doi.org/10.31650/2415-377X-2019-76-24-30
dc.relation.urihttps://doi.org/10.31650/2415-377X-2019-77-84-92
dc.relation.urihttp://dx.doi.org/10.31650/2415-377X-2019-77-58-65
dc.relation.urihttp://visnyk-odaba.org.ua/2023-06/6-6.pdf
dc.relation.urihttps://doi.org/10.23939/jtbp2024.01.130
dc.relation.urihttps://reposit.nupp.edu.ua/handle/PoltNTU/8074
dc.relation.urihttps://reposit.nupp.edu.ua/handle/PoltNTU/7585
dc.relation.urihttp://visnyk-odaba.org.ua/2021-82/82-5.pdf
dc.relation.urihttps://science.lpnu.ua/uk/node/14929
dc.relation.urihttps://doi.org/10.2478/czoto-2019-0036
dc.relation.urihttps://doi.org/10.31734/architecture2017.18.019
dc.relation.urihttps://doi.org/10.1016/j.proeng.2015.08.187
dc.relation.urihttps://doi.org/10.1016/j.engstruct.2021.112138
dc.relation.urihttps://doi.org/10.30544/591
dc.relation.urihttps://doi.org/10.1016/j.corsci.2011.01.058
dc.relation.urihttps://doi.org/10.1016/j.compstruct.2010.01.001
dc.relation.urihttps://doi.org/10.12989/acc2013.01.2.121
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2018.08.123
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Kravchuk V., Vegera P., Khmil R., 2024
dc.subjectзгинані залізобетонні елементи
dc.subjectпошкодження
dc.subjectдефекти
dc.subjectзалишкова несуча здатність
dc.subjectкорозія
dc.subjectнапружено-деформований стан
dc.subjectbent reinforced concrete elements
dc.subjectdamage
dc.subjectdefects
dc.subjectresidual bearing capacity
dc.subjectcorrosion
dc.subjectstress-strain state
dc.titleAnalysis of the impact of cross-section damage on the strength and deformability of bent reinforced concrete elements
dc.title.alternativeАналіз впливу пошкоджень поперечного перерізу згинаних залізобетоних елементів на міцність та деформативність
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v6n2_Kravchuk_V-Analysis_of_the_impact_of_19-27.pdf
Size:
6.04 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v6n2_Kravchuk_V-Analysis_of_the_impact_of_19-27__COVER.png
Size:
449.81 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: