Analysis of the impact of cross-section damage on the strength and deformability of bent reinforced concrete elements
| dc.citation.epage | 27 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Теорія та будівельна практика | |
| dc.citation.spage | 19 | |
| dc.citation.volume | 6 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Кравчук, В. С. | |
| dc.contributor.author | Вегера, П. І. | |
| dc.contributor.author | Хміль, Р. Є. | |
| dc.contributor.author | Kravchuk, Volodymyr | |
| dc.contributor.author | Vegera, Pavlo | |
| dc.contributor.author | Khmil, Roman | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-11-04T09:42:47Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | У статті аналізуються дефекти та пошкодження залізобетонних конструкцій, зокрема фізичні, біологічні та хімічні, з акцентом на вплив тривалої експлуатації та агресивних умов навколишнього середовища. Дослідження показують, що механічні пошкодження, такі як відколи та вибоїни, значно знижують несучу здатність конструкцій та спричиняють складні деформації. Визначено актуальні напрямки наукових досліджень, зокрема щодо поведінки пошкоджених залізобетонних балок під навантаженням, які потребують подальшого розвитку та вдосконалення методів оцінки залишкової несучої здатності. У статті наголошується на необхідності додаткових експериментальних досліджень та використання сучасного програмного забезпечення для більш точних методів прогнозування та розрахунку залізобетонних конструкцій. | |
| dc.description.abstract | The article analyzes defects and damage in reinforced concrete structures, particularly physical, biological, and chemical, with an emphasis on the impact of prolonged operation and aggressive environmental conditions. Research shows that mechanical damage, such as spalling and potholes, significantly reduces the load-bearing capacity of structures and causes complex deformations. Relevant directions in scientific research have been identified, particularly regarding the behavior of damaged reinforced concrete beams under load, which require further development and improvement of methods for assessing residual load-bearing capacity. The article emphasizes the need for additional experimental studies and the use of modern software for more accurate methods of predicting and calculating reinforced concrete structures. | |
| dc.format.extent | 19-27 | |
| dc.format.pages | 9 | |
| dc.identifier.citation | Kravchuk V. Analysis of the impact of cross-section damage on the strength and deformability of bent reinforced concrete elements / Volodymyr Kravchuk, Pavlo Vegera, Roman Khmil // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 19–27. | |
| dc.identifier.citationen | Kravchuk V. Analysis of the impact of cross-section damage on the strength and deformability of bent reinforced concrete elements / Volodymyr Kravchuk, Pavlo Vegera, Roman Khmil // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 19–27. | |
| dc.identifier.doi | doi.org/10.23939/jtbp2024.02.019 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/117197 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Теорія та будівельна практика, 2 (6), 2024 | |
| dc.relation.ispartof | Theory and Building Practice, 2 (6), 2024 | |
| dc.relation.references | Surianinov, M., Neutov, S., & Yesvandzhyia, V. (2023). Bearing capacity of a beam damaged during combat actions strengthened with the use of fiber concrete. Spatial development, 5, 212-222. https://doi.org/10.32347/2786-7269.2023.5.212-222 | |
| dc.relation.references | Blikharskyy, Y., & Kopiika, N. (2022). Аnalysis of the most common damages in reinforced concrete structures: a review. Theory and Building Practice, 4(1), 35-42. https://doi.org/10.23939/jtbp2022.01.035 | |
| dc.relation.references | Mykhalevskyi, N. A., Vegera, P. І., & Blikharskyi, Z. Y. (2023). The influence of damage to reinforced concrete beams on strength and deformability: the review. Theory and Building Practice, 5(1), 112-119. https://doi.org/10.23939/jtbp2023.01.112 | |
| dc.relation.references | Klymenko, Ye. V., & Oreshkovych, М. (2013). On the Study of the Compressed Damaged Reinforced Concrete Elements of Circular Cross-Section. Theory and building practice, 755, 173-178. https://scien-ce.lpnu.ua/sctp/all-volumes-and-issues/volume-755-2013-1/do-pitannya-vivchennya-roboti-stisnutih-poshkodzhenih | |
| dc.relation.references | Hait, P., Arjun, S., & Satyabrata, Ch. (2018). Quantification of damage to RC structures: A comprehensive review. Disaster Advances, 11(12), 41-59. https://www.academia.edu/39813716/Quantification_of_damage_to_RC_Structures_A_Comprehensive_review | |
| dc.relation.references | Krasnitskyi, P., Lobodanov, M., & Blikharskyy Z. (2024). Аnalysis of software packages applying in the investigation of the damage effect to reinforced concrete beams on strength and deformability: the review. Theory and Building Practice, 6(1), 61-68. https://doi.org/10.23939/jtbp2024.01.061 | |
| dc.relation.references | Klymenko, Ye. V., & Polianskyi, K. V. (2019). Experimental investigation of the stress-strain state of damaged reinforced concrete beams. Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 76, 24-30. https://doi.org/10.31650/2415-377X-2019-76-24-30 | |
| dc.relation.references | Pavlikov, A.M., Harkava, O.V., Hasenko, A.V., & Andriiets, K.I. (2019). Comparative analysis of numerical simulation results of work of biaxially bended reinforced concrete beams with experimental data. Building construction: Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 77, 84-92. https://doi.org/10.31650/2415-377X-2019-77-84-92 | |
| dc.relation.references | Klymenko,Ye.V., Antoniuk, N.R., & Polianskyi, K.V. (2019). Modeling the work of damaged reinforced concrete beams in the SC "LIRA-SAPR". Bulletin of the Odessa State Academy of Construction and Architecture, 77, 58-65. http://dx.doi.org/10.31650/2415-377X-2019-77-58-65 | |
| dc.relation.references | Mykhalevskyi, N.A., Vegera, P.І., & Blikharskyy, Z.Y. (2023). Analysis of the effect of uneven damage of reinforced concrete beam using the FEMAP software package. Modern construction and architecture, 6, 54-61. http://visnyk-odaba.org.ua/2023-06/6-6.pdf | |
| dc.relation.references | Deineka, V., Vegera, P., & Blikharskyy, Z. (2024). Simulation influence of uneven damage of reinforced concrete beam in LIRA-FEM. Theory and Building Practice, 6(1), 130-140. https://doi.org/10.23939/jtbp2024.01.130 | |
| dc.relation.references | Voskobiinyk, O.P, Kitaiev O.O., Makarenko Ya.V., & Buhaienko Ye.S. (2011). Experimental investigation of reinforced concrete beams with defects and damages that cause the skew bending. Academic journal. Industrial Machine Building, Civil Engineering, 1(29), 87-92. https://reposit.nupp.edu.ua/handle/PoltNTU/8074 | |
| dc.relation.references | Pavlikov, A.M., Harkava, O. V., & Barylyak, B.A. (2019). Determination of reinforced concrete columns strength after operational damage. Bulletin of the Odessa State Academy of Civil Engineering and Architecture: Building Structures, 76, 70-77. https://reposit.nupp.edu.ua/handle/PoltNTU/7585 | |
| dc.relation.references | Lobodanov, M. M., Vegera, P. І., & Blikharskyy, Z.Y. (2021). Investigation of the influence of damage of the compressed concrete zone in bending rectangular reinforced concrete elements with insufficient reinforcement. Bulletin of the Odessa State Academy of Civil Engineering and Architecture: Building Structures, 82, 47-55. http://visnyk-odaba.org.ua/2021-82/82-5.pdf | |
| dc.relation.references | Lobodanov, M. M., Vegera, P. І., & Blikharskyy, Z.Y. (2018). Analysis of influence of main types of defects and damage on the bearing capasity of reinforced concrete elements. Bulletin of the National University "Lviv Polytechnic": Theory and Practice of Construction, 888, 93-100. https://science.lpnu.ua/uk/node/14929 | |
| dc.relation.references | Blikharskyy, Z. Z., Vegera, P. І., Shnal, T.M. (2018). Іnfluence of defects of the working rebar on the bearing capacity of the reinforced concrete beams. Bulletin of the National University "Lviv Polytechnic":Theory and Practice of Construction, 888, 12-17. https://doi.org/10.2478/czoto-2019-0036 | |
| dc.relation.references | Shmyh, R. (2017). Mathematical simulation of the stressed-deformed condition of reinforced concrete beams in simultaneous influence of aggressive environment and loading. Econtechmod: An International Quarterly Journal, 6(3), 39-44. https://doi.org/10.31734/architecture2017.18.019 | |
| dc.relation.references | Bonić, Z., Savić, J., Topličić-Ćurčić, G., & Davidoć, N. (2015). Damage of Concrete and Reinforcement of Reinforced-Concrete Foundations Caused by Environmental Effects. Procedia Engineering, 117, 411-418. https://doi.org/10.1016/j.proeng.2015.08.187 | |
| dc.relation.references | Blikharskyy, Z., Selejdak, J., Blikharskyy, Y., & Khmil, R. (2019). Corrosion of reinforce bars in RC constructions. System Safety: Human-Technical Facility-Environment, 1(1), 277-283. https://doi.org/10.2478/czoto-2019-0036 | |
| dc.relation.references | Santos, J., & Henriques, A. (2021). Rotation capacity of corroded RC beams with special ductility tempcore rebars. Engineering Structures, 236(1), 112138. https://doi.org/10.1016/j.engstruct.2021.112138 | |
| dc.relation.references | Royani, A., Prifiharni, S., Priyotomo, G., & Sundjono, S. (2021). Corrosion rate and corrosion behaviour analysis of carbon steel pipe at constant condensed fluid. Metallurgical and Materials Engineering, 27(4), 519-530. https://doi.org/10.30544/591 | |
| dc.relation.references | Xia, J., Wei-liang, J., & Li, L. (2011). Shear performance of reinforced concrete beams with corroded stirrups in chloride environment. Corrosion Science, 53(5), 1794-1805. https://doi.org/10.1016/j.corsci.2011.01.058 | |
| dc.relation.references | Al-Saidy, A. H., Al-Harthy, A. S., Al-Jabri, K. S., Abdul-Halim, M., & Al-Shidi, N. M. (2010). Structural performance of corroded RC beams repaired with CFRP sheets. Composite Structures, 92, 1931-1938. https://doi.org/10.1016/j.compstruct.2010.01.001 | |
| dc.relation.references | Zhu, W., & François, R. (2013). Effect of corrosion pattern on the ductility of tensile reinforcement extracted from a 26-year-old corroded beam. Advances in Concrete Construction, 1(2), 121-136. https://doi.org/10.12989/acc2013.01.2.121 | |
| dc.relation.references | Lu, Z.-H., Li, H., Li, W., Zhao, Y.-G., & Dong, W. (2018). An empirical model for the shear strength of corroded reinforced concrete beam. Construction and Building Materials, 188, 1234-1248. https://doi.org/10.1016/j.conbuildmat.2018.08.123 | |
| dc.relation.referencesen | Surianinov, M., Neutov, S., & Yesvandzhyia, V. (2023). Bearing capacity of a beam damaged during combat actions strengthened with the use of fiber concrete. Spatial development, 5, 212-222. https://doi.org/10.32347/2786-7269.2023.5.212-222 | |
| dc.relation.referencesen | Blikharskyy, Y., & Kopiika, N. (2022). Analysis of the most common damages in reinforced concrete structures: a review. Theory and Building Practice, 4(1), 35-42. https://doi.org/10.23939/jtbp2022.01.035 | |
| dc.relation.referencesen | Mykhalevskyi, N. A., Vegera, P. I., & Blikharskyi, Z. Y. (2023). The influence of damage to reinforced concrete beams on strength and deformability: the review. Theory and Building Practice, 5(1), 112-119. https://doi.org/10.23939/jtbp2023.01.112 | |
| dc.relation.referencesen | Klymenko, Ye. V., & Oreshkovych, M. (2013). On the Study of the Compressed Damaged Reinforced Concrete Elements of Circular Cross-Section. Theory and building practice, 755, 173-178. https://scien-ce.lpnu.ua/sctp/all-volumes-and-issues/volume-755-2013-1/do-pitannya-vivchennya-roboti-stisnutih-poshkodzhenih | |
| dc.relation.referencesen | Hait, P., Arjun, S., & Satyabrata, Ch. (2018). Quantification of damage to RC structures: A comprehensive review. Disaster Advances, 11(12), 41-59. https://www.academia.edu/39813716/Quantification_of_damage_to_RC_Structures_A_Comprehensive_review | |
| dc.relation.referencesen | Krasnitskyi, P., Lobodanov, M., & Blikharskyy Z. (2024). Analysis of software packages applying in the investigation of the damage effect to reinforced concrete beams on strength and deformability: the review. Theory and Building Practice, 6(1), 61-68. https://doi.org/10.23939/jtbp2024.01.061 | |
| dc.relation.referencesen | Klymenko, Ye. V., & Polianskyi, K. V. (2019). Experimental investigation of the stress-strain state of damaged reinforced concrete beams. Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 76, 24-30. https://doi.org/10.31650/2415-377X-2019-76-24-30 | |
| dc.relation.referencesen | Pavlikov, A.M., Harkava, O.V., Hasenko, A.V., & Andriiets, K.I. (2019). Comparative analysis of numerical simulation results of work of biaxially bended reinforced concrete beams with experimental data. Building construction: Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 77, 84-92. https://doi.org/10.31650/2415-377X-2019-77-84-92 | |
| dc.relation.referencesen | Klymenko,Ye.V., Antoniuk, N.R., & Polianskyi, K.V. (2019). Modeling the work of damaged reinforced concrete beams in the SC "LIRA-SAPR". Bulletin of the Odessa State Academy of Construction and Architecture, 77, 58-65. http://dx.doi.org/10.31650/2415-377X-2019-77-58-65 | |
| dc.relation.referencesen | Mykhalevskyi, N.A., Vegera, P.I., & Blikharskyy, Z.Y. (2023). Analysis of the effect of uneven damage of reinforced concrete beam using the FEMAP software package. Modern construction and architecture, 6, 54-61. http://visnyk-odaba.org.ua/2023-06/6-6.pdf | |
| dc.relation.referencesen | Deineka, V., Vegera, P., & Blikharskyy, Z. (2024). Simulation influence of uneven damage of reinforced concrete beam in LIRA-FEM. Theory and Building Practice, 6(1), 130-140. https://doi.org/10.23939/jtbp2024.01.130 | |
| dc.relation.referencesen | Voskobiinyk, O.P, Kitaiev O.O., Makarenko Ya.V., & Buhaienko Ye.S. (2011). Experimental investigation of reinforced concrete beams with defects and damages that cause the skew bending. Academic journal. Industrial Machine Building, Civil Engineering, 1(29), 87-92. https://reposit.nupp.edu.ua/handle/PoltNTU/8074 | |
| dc.relation.referencesen | Pavlikov, A.M., Harkava, O. V., & Barylyak, B.A. (2019). Determination of reinforced concrete columns strength after operational damage. Bulletin of the Odessa State Academy of Civil Engineering and Architecture: Building Structures, 76, 70-77. https://reposit.nupp.edu.ua/handle/PoltNTU/7585 | |
| dc.relation.referencesen | Lobodanov, M. M., Vegera, P. I., & Blikharskyy, Z.Y. (2021). Investigation of the influence of damage of the compressed concrete zone in bending rectangular reinforced concrete elements with insufficient reinforcement. Bulletin of the Odessa State Academy of Civil Engineering and Architecture: Building Structures, 82, 47-55. http://visnyk-odaba.org.ua/2021-82/82-5.pdf | |
| dc.relation.referencesen | Lobodanov, M. M., Vegera, P. I., & Blikharskyy, Z.Y. (2018). Analysis of influence of main types of defects and damage on the bearing capasity of reinforced concrete elements. Bulletin of the National University "Lviv Polytechnic": Theory and Practice of Construction, 888, 93-100. https://science.lpnu.ua/uk/node/14929 | |
| dc.relation.referencesen | Blikharskyy, Z. Z., Vegera, P. I., Shnal, T.M. (2018). Influence of defects of the working rebar on the bearing capacity of the reinforced concrete beams. Bulletin of the National University "Lviv Polytechnic":Theory and Practice of Construction, 888, 12-17. https://doi.org/10.2478/czoto-2019-0036 | |
| dc.relation.referencesen | Shmyh, R. (2017). Mathematical simulation of the stressed-deformed condition of reinforced concrete beams in simultaneous influence of aggressive environment and loading. Econtechmod: An International Quarterly Journal, 6(3), 39-44. https://doi.org/10.31734/architecture2017.18.019 | |
| dc.relation.referencesen | Bonić, Z., Savić, J., Topličić-Ćurčić, G., & Davidoć, N. (2015). Damage of Concrete and Reinforcement of Reinforced-Concrete Foundations Caused by Environmental Effects. Procedia Engineering, 117, 411-418. https://doi.org/10.1016/j.proeng.2015.08.187 | |
| dc.relation.referencesen | Blikharskyy, Z., Selejdak, J., Blikharskyy, Y., & Khmil, R. (2019). Corrosion of reinforce bars in RC constructions. System Safety: Human-Technical Facility-Environment, 1(1), 277-283. https://doi.org/10.2478/czoto-2019-0036 | |
| dc.relation.referencesen | Santos, J., & Henriques, A. (2021). Rotation capacity of corroded RC beams with special ductility tempcore rebars. Engineering Structures, 236(1), 112138. https://doi.org/10.1016/j.engstruct.2021.112138 | |
| dc.relation.referencesen | Royani, A., Prifiharni, S., Priyotomo, G., & Sundjono, S. (2021). Corrosion rate and corrosion behaviour analysis of carbon steel pipe at constant condensed fluid. Metallurgical and Materials Engineering, 27(4), 519-530. https://doi.org/10.30544/591 | |
| dc.relation.referencesen | Xia, J., Wei-liang, J., & Li, L. (2011). Shear performance of reinforced concrete beams with corroded stirrups in chloride environment. Corrosion Science, 53(5), 1794-1805. https://doi.org/10.1016/j.corsci.2011.01.058 | |
| dc.relation.referencesen | Al-Saidy, A. H., Al-Harthy, A. S., Al-Jabri, K. S., Abdul-Halim, M., & Al-Shidi, N. M. (2010). Structural performance of corroded RC beams repaired with CFRP sheets. Composite Structures, 92, 1931-1938. https://doi.org/10.1016/j.compstruct.2010.01.001 | |
| dc.relation.referencesen | Zhu, W., & François, R. (2013). Effect of corrosion pattern on the ductility of tensile reinforcement extracted from a 26-year-old corroded beam. Advances in Concrete Construction, 1(2), 121-136. https://doi.org/10.12989/acc2013.01.2.121 | |
| dc.relation.referencesen | Lu, Z.-H., Li, H., Li, W., Zhao, Y.-G., & Dong, W. (2018). An empirical model for the shear strength of corroded reinforced concrete beam. Construction and Building Materials, 188, 1234-1248. https://doi.org/10.1016/j.conbuildmat.2018.08.123 | |
| dc.relation.uri | https://doi.org/10.32347/2786-7269.2023.5.212-222 | |
| dc.relation.uri | https://doi.org/10.23939/jtbp2022.01.035 | |
| dc.relation.uri | https://doi.org/10.23939/jtbp2023.01.112 | |
| dc.relation.uri | https://scien-ce.lpnu.ua/sctp/all-volumes-and-issues/volume-755-2013-1/do-pitannya-vivchennya-roboti-stisnutih-poshkodzhenih | |
| dc.relation.uri | https://www.academia.edu/39813716/Quantification_of_damage_to_RC_Structures_A_Comprehensive_review | |
| dc.relation.uri | https://doi.org/10.23939/jtbp2024.01.061 | |
| dc.relation.uri | https://doi.org/10.31650/2415-377X-2019-76-24-30 | |
| dc.relation.uri | https://doi.org/10.31650/2415-377X-2019-77-84-92 | |
| dc.relation.uri | http://dx.doi.org/10.31650/2415-377X-2019-77-58-65 | |
| dc.relation.uri | http://visnyk-odaba.org.ua/2023-06/6-6.pdf | |
| dc.relation.uri | https://doi.org/10.23939/jtbp2024.01.130 | |
| dc.relation.uri | https://reposit.nupp.edu.ua/handle/PoltNTU/8074 | |
| dc.relation.uri | https://reposit.nupp.edu.ua/handle/PoltNTU/7585 | |
| dc.relation.uri | http://visnyk-odaba.org.ua/2021-82/82-5.pdf | |
| dc.relation.uri | https://science.lpnu.ua/uk/node/14929 | |
| dc.relation.uri | https://doi.org/10.2478/czoto-2019-0036 | |
| dc.relation.uri | https://doi.org/10.31734/architecture2017.18.019 | |
| dc.relation.uri | https://doi.org/10.1016/j.proeng.2015.08.187 | |
| dc.relation.uri | https://doi.org/10.1016/j.engstruct.2021.112138 | |
| dc.relation.uri | https://doi.org/10.30544/591 | |
| dc.relation.uri | https://doi.org/10.1016/j.corsci.2011.01.058 | |
| dc.relation.uri | https://doi.org/10.1016/j.compstruct.2010.01.001 | |
| dc.relation.uri | https://doi.org/10.12989/acc2013.01.2.121 | |
| dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2018.08.123 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.rights.holder | © Kravchuk V., Vegera P., Khmil R., 2024 | |
| dc.subject | згинані залізобетонні елементи | |
| dc.subject | пошкодження | |
| dc.subject | дефекти | |
| dc.subject | залишкова несуча здатність | |
| dc.subject | корозія | |
| dc.subject | напружено-деформований стан | |
| dc.subject | bent reinforced concrete elements | |
| dc.subject | damage | |
| dc.subject | defects | |
| dc.subject | residual bearing capacity | |
| dc.subject | corrosion | |
| dc.subject | stress-strain state | |
| dc.title | Analysis of the impact of cross-section damage on the strength and deformability of bent reinforced concrete elements | |
| dc.title.alternative | Аналіз впливу пошкоджень поперечного перерізу згинаних залізобетоних елементів на міцність та деформативність | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1