Systemization of requirements for operational quality control systems of meat products
| dc.citation.epage | 86 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Вимірювальна техніка та метрологія | |
| dc.citation.spage | 83 | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Kutyansky, Ostap | |
| dc.contributor.author | Rybak, Yurii | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-11-25T13:13:59Z | |
| dc.date.created | 2025-06-20 | |
| dc.date.issued | 2025-06-20 | |
| dc.description.abstract | This paper presents a study on organizing requirements for automated meat quality control systems. It identifies key quality indicators – color, texture, marbling, and gloss and analyzes the technical and functional parameters essential for practical assessment. The research highlights integrating computer vision, image processing, and machine learning algorithms to enhance objectivity, accuracy, and evaluation speed. The proposed approach aims to reduce human influence, enable real-time monitoring, and offer scalable solutions suitable for large-scale producers and small enterprises. | |
| dc.format.extent | 83-86 | |
| dc.format.pages | 4 | |
| dc.identifier.citation | Kutyansky O. Systemization of requirements for operational quality control systems of meat products / Ostap Kutyansky, Yurii Rybak // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 86. — No 2. — P. 83–86. | |
| dc.identifier.citation2015 | Kutyansky O., Rybak Y. Systemization of requirements for operational quality control systems of meat products // Measuring Equipment and Metrology, Lviv. 2025. Vol 86. No 2. P. 83–86. | |
| dc.identifier.citationenAPA | Kutyansky, O., & Rybak, Y. (2025). Systemization of requirements for operational quality control systems of meat products. Measuring Equipment and Metrology, 86(2), 83-86. Lviv Politechnic Publishing House.. | |
| dc.identifier.citationenCHICAGO | Kutyansky O., Rybak Y. (2025) Systemization of requirements for operational quality control systems of meat products. Measuring Equipment and Metrology (Lviv), vol. 86, no 2, pp. 83-86. | |
| dc.identifier.doi | https://doi.org/10.23939/istcmtm2025.02.083 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/121869 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Вимірювальна техніка та метрологія, 2 (86), 2025 | |
| dc.relation.ispartof | Measuring Equipment and Metrology, 2 (86), 2025 | |
| dc.relation.referencesen | [1] I. F. Ovchynnikova, S. O. Dubinina, T. M. Letuta, M. O. Naumenko, and A. A. Dubinina, Methods for determining the falsification of goods. Kyiv: Pub. dim “Professional”,2010 [Online]. Available: https://library.nlu.edu.ua/POLN_TEXT/CUL/24-Metodi%20viznachennya%20falsif%20tovariv-Dubinina.pdf | |
| dc.relation.referencesen | [2] Y. Shi et al., “A review on meat quality evaluation methods based on non-destructive computer vision and artificial intelligence technologies”, Food Sci. Animal Resour., vol. 41, No. 4, pp. 563–588, Jul. 2021. Accessed: Apr. 2, 2025 [Online]. Available: https://doi.org/10.5851/kosfa.2021.e25 | |
| dc.relation.referencesen | [3] K. O. Honikel, “Assessment of meat quality”, in Animal Biotechnology and the Quality of Meat Production. Elsevier, 1991, pp. 107–125. Accessed: Apr. 2, 2025 [Online]. Available: https://doi.org/10.1016/b978-0-444-88930-0.50013-4 | |
| dc.relation.referencesen | [4] “HACCP principles & application guidelines.” U.S. Food & Drug. Accessed: Apr. 2, 2025 [Online]. Available: https://www.fda.gov/food/hazard-analysis-critical-controlpoint- haccp/haccp-principles-application-guidelines | |
| dc.relation.referencesen | [5] “Food safety”, in Iso 22000. United Nations, 2007, pp. 11–16. Accessed: Apr. 2, 2025 [Online]. Available: https://doi.org/10.18356/adf67d38-en | |
| dc.relation.referencesen | [6] “U.S. Department of agriculture.” Accessed: Apr. 2, 2025 [Online]. Available: https://www.usda.gov/ | |
| dc.relation.referencesen | [7] C. Ruedt, M. Gibis, and J. Weiss, “Meat color and iridescence: Origin, analysis, and approaches to modulation”, Comprehensive Rev. Food Sci. Food Saf., Jun. 2023. Accessed: Apr. 2, 2025 [Online]. Available: https://doi.org/10.1111/1541-4337.13191 | |
| dc.relation.referencesen | [8] R. Warner et al., “Meat tenderness: Advances in biology, biochemistry, molecular mechanisms and new technologies”, Meat Sci., p. 108657, Aug. 2021. Accessed: Apr. 2, 2025 [Online]. Available: https://doi.org/10.1016/j.meatsci.2021.108657 | |
| dc.relation.referencesen | [9] W. Cheng, J.-H. Cheng, D.-W. Sun, and H. Pu, “Marbling analysis for evaluating meat quality: Methods and techniques”, Comprehensive Rev. Food Sci. Food Saf., vol. 14, No. 5, pp. 523–535, Aug. 2015. Accessed: Apr. 2, 2025. [Online]. Available: https://doi.org/10.1111/1541-4337.12149 | |
| dc.relation.referencesen | [10] “Carcass beef grades and standards | agricultural marketing service”. Home / Agricultural Marketing Service. Accessed: Apr. 2, 2025 [Online]. Available: https://www. ams.usda.gov/grades-standards/carcass-beef-grades-andstandards | |
| dc.relation.referencesen | [11] T. Gotoh, T. Nishimura, K. Kuchida, and H. Mannen, “The Japanese Wagyu beef industry: Current situation and future prospects – A review”, Asian-Australas. J. Animal Sci., vol. 31, No. 7, pp. 933–950, Jul. 2018. Accessed: Apr. 2, 2025 [Online]. Available: https://doi.org/10.5713/ajas.18.0333 | |
| dc.relation.referencesen | [12] L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang, and Y. Miao, “Review of image classification algorithms based on convolutional neural networks”, Remote Sens., vol. 13, No. 22, p. 4712, Nov. 2021. Accessed: Apr. 3, 2025 [Online]. Available: https://doi.org/10.3390/rs13224712 | |
| dc.relation.referencesen | [13] N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni, “U-Net and its variants for medical image segmentation: A review of theory and applications”, IEEE Access, vol. 9, pp. 82031–82057, 2021. Accessed: Apr. 3, 2025 [Online]. Available: https://doi.org/10.1109/access.2021.3086020 | |
| dc.relation.referencesen | [14] K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques”, Global Transitions Proc., Apr. 2022. Accessed: Apr. 3, 2025 [Online]. Available: https://doi.org/10.1016/j.gltp.2022.04.020 | |
| dc.relation.uri | https://library.nlu.edu.ua/POLN_TEXT/CUL/24-Metodi%20viznachennya%20falsif%20tovariv-Dubinina.pdf | |
| dc.relation.uri | https://doi.org/10.5851/kosfa.2021.e25 | |
| dc.relation.uri | https://doi.org/10.1016/b978-0-444-88930-0.50013-4 | |
| dc.relation.uri | https://www.fda.gov/food/hazard-analysis-critical-controlpoint- | |
| dc.relation.uri | https://doi.org/10.18356/adf67d38-en | |
| dc.relation.uri | https://www.usda.gov/ | |
| dc.relation.uri | https://doi.org/10.1111/1541-4337.13191 | |
| dc.relation.uri | https://doi.org/10.1016/j.meatsci.2021.108657 | |
| dc.relation.uri | https://doi.org/10.1111/1541-4337.12149 | |
| dc.relation.uri | https://www | |
| dc.relation.uri | https://doi.org/10.5713/ajas.18.0333 | |
| dc.relation.uri | https://doi.org/10.3390/rs13224712 | |
| dc.relation.uri | https://doi.org/10.1109/access.2021.3086020 | |
| dc.relation.uri | https://doi.org/10.1016/j.gltp.2022.04.020 | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2025 | |
| dc.subject | meat quality control | |
| dc.subject | classification algorithms | |
| dc.subject | computer vision | |
| dc.subject | machine learning | |
| dc.subject | image analysis | |
| dc.subject | texture assessment | |
| dc.subject | marbling evaluation | |
| dc.subject | automated quality systems | |
| dc.title | Systemization of requirements for operational quality control systems of meat products | |
| dc.type | Article |