Systemization of requirements for operational quality control systems of meat products

dc.citation.epage86
dc.citation.issue2
dc.citation.journalTitleВимірювальна техніка та метрологія
dc.citation.spage83
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorKutyansky, Ostap
dc.contributor.authorRybak, Yurii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-25T13:13:59Z
dc.date.created2025-06-20
dc.date.issued2025-06-20
dc.description.abstractThis paper presents a study on organizing requirements for automated meat quality control systems. It identifies key quality indicators – color, texture, marbling, and gloss and analyzes the technical and functional parameters essential for practical assessment. The research highlights integrating computer vision, image processing, and machine learning algorithms to enhance objectivity, accuracy, and evaluation speed. The proposed approach aims to reduce human influence, enable real-time monitoring, and offer scalable solutions suitable for large-scale producers and small enterprises.
dc.format.extent83-86
dc.format.pages4
dc.identifier.citationKutyansky O. Systemization of requirements for operational quality control systems of meat products / Ostap Kutyansky, Yurii Rybak // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 86. — No 2. — P. 83–86.
dc.identifier.citation2015Kutyansky O., Rybak Y. Systemization of requirements for operational quality control systems of meat products // Measuring Equipment and Metrology, Lviv. 2025. Vol 86. No 2. P. 83–86.
dc.identifier.citationenAPAKutyansky, O., & Rybak, Y. (2025). Systemization of requirements for operational quality control systems of meat products. Measuring Equipment and Metrology, 86(2), 83-86. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOKutyansky O., Rybak Y. (2025) Systemization of requirements for operational quality control systems of meat products. Measuring Equipment and Metrology (Lviv), vol. 86, no 2, pp. 83-86.
dc.identifier.doihttps://doi.org/10.23939/istcmtm2025.02.083
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/121869
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВимірювальна техніка та метрологія, 2 (86), 2025
dc.relation.ispartofMeasuring Equipment and Metrology, 2 (86), 2025
dc.relation.referencesen[1] I. F. Ovchynnikova, S. O. Dubinina, T. M. Letuta, M. O. Naumenko, and A. A. Dubinina, Methods for determining the falsification of goods. Kyiv: Pub. dim “Professional”,2010 [Online]. Available: https://library.nlu.edu.ua/POLN_TEXT/CUL/24-Metodi%20viznachennya%20falsif%20tovariv-Dubinina.pdf
dc.relation.referencesen[2] Y. Shi et al., “A review on meat quality evaluation methods based on non-destructive computer vision and artificial intelligence technologies”, Food Sci. Animal Resour., vol. 41, No. 4, pp. 563–588, Jul. 2021. Accessed: Apr. 2, 2025 [Online]. Available: https://doi.org/10.5851/kosfa.2021.e25
dc.relation.referencesen[3] K. O. Honikel, “Assessment of meat quality”, in Animal Biotechnology and the Quality of Meat Production. Elsevier, 1991, pp. 107–125. Accessed: Apr. 2, 2025 [Online]. Available: https://doi.org/10.1016/b978-0-444-88930-0.50013-4
dc.relation.referencesen[4] “HACCP principles & application guidelines.” U.S. Food & Drug. Accessed: Apr. 2, 2025 [Online]. Available: https://www.fda.gov/food/hazard-analysis-critical-controlpoint- haccp/haccp-principles-application-guidelines
dc.relation.referencesen[5] “Food safety”, in Iso 22000. United Nations, 2007, pp. 11–16. Accessed: Apr. 2, 2025 [Online]. Available: https://doi.org/10.18356/adf67d38-en
dc.relation.referencesen[6] “U.S. Department of agriculture.” Accessed: Apr. 2, 2025 [Online]. Available: https://www.usda.gov/
dc.relation.referencesen[7] C. Ruedt, M. Gibis, and J. Weiss, “Meat color and iridescence: Origin, analysis, and approaches to modulation”, Comprehensive Rev. Food Sci. Food Saf., Jun. 2023. Accessed: Apr. 2, 2025 [Online]. Available: https://doi.org/10.1111/1541-4337.13191
dc.relation.referencesen[8] R. Warner et al., “Meat tenderness: Advances in biology, biochemistry, molecular mechanisms and new technologies”, Meat Sci., p. 108657, Aug. 2021. Accessed: Apr. 2, 2025 [Online]. Available: https://doi.org/10.1016/j.meatsci.2021.108657
dc.relation.referencesen[9] W. Cheng, J.-H. Cheng, D.-W. Sun, and H. Pu, “Marbling analysis for evaluating meat quality: Methods and techniques”, Comprehensive Rev. Food Sci. Food Saf., vol. 14, No. 5, pp. 523–535, Aug. 2015. Accessed: Apr. 2, 2025. [Online]. Available: https://doi.org/10.1111/1541-4337.12149
dc.relation.referencesen[10] “Carcass beef grades and standards | agricultural marketing service”. Home / Agricultural Marketing Service. Accessed: Apr. 2, 2025 [Online]. Available: https://www. ams.usda.gov/grades-standards/carcass-beef-grades-andstandards
dc.relation.referencesen[11] T. Gotoh, T. Nishimura, K. Kuchida, and H. Mannen, “The Japanese Wagyu beef industry: Current situation and future prospects – A review”, Asian-Australas. J. Animal Sci., vol. 31, No. 7, pp. 933–950, Jul. 2018. Accessed: Apr. 2, 2025 [Online]. Available: https://doi.org/10.5713/ajas.18.0333
dc.relation.referencesen[12] L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang, and Y. Miao, “Review of image classification algorithms based on convolutional neural networks”, Remote Sens., vol. 13, No. 22, p. 4712, Nov. 2021. Accessed: Apr. 3, 2025 [Online]. Available: https://doi.org/10.3390/rs13224712
dc.relation.referencesen[13] N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni, “U-Net and its variants for medical image segmentation: A review of theory and applications”, IEEE Access, vol. 9, pp. 82031–82057, 2021. Accessed: Apr. 3, 2025 [Online]. Available: https://doi.org/10.1109/access.2021.3086020
dc.relation.referencesen[14] K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques”, Global Transitions Proc., Apr. 2022. Accessed: Apr. 3, 2025 [Online]. Available: https://doi.org/10.1016/j.gltp.2022.04.020
dc.relation.urihttps://library.nlu.edu.ua/POLN_TEXT/CUL/24-Metodi%20viznachennya%20falsif%20tovariv-Dubinina.pdf
dc.relation.urihttps://doi.org/10.5851/kosfa.2021.e25
dc.relation.urihttps://doi.org/10.1016/b978-0-444-88930-0.50013-4
dc.relation.urihttps://www.fda.gov/food/hazard-analysis-critical-controlpoint-
dc.relation.urihttps://doi.org/10.18356/adf67d38-en
dc.relation.urihttps://www.usda.gov/
dc.relation.urihttps://doi.org/10.1111/1541-4337.13191
dc.relation.urihttps://doi.org/10.1016/j.meatsci.2021.108657
dc.relation.urihttps://doi.org/10.1111/1541-4337.12149
dc.relation.urihttps://www
dc.relation.urihttps://doi.org/10.5713/ajas.18.0333
dc.relation.urihttps://doi.org/10.3390/rs13224712
dc.relation.urihttps://doi.org/10.1109/access.2021.3086020
dc.relation.urihttps://doi.org/10.1016/j.gltp.2022.04.020
dc.rights.holder© Національний університет „Львівська політехніка“, 2025
dc.subjectmeat quality control
dc.subjectclassification algorithms
dc.subjectcomputer vision
dc.subjectmachine learning
dc.subjectimage analysis
dc.subjecttexture assessment
dc.subjectmarbling evaluation
dc.subjectautomated quality systems
dc.titleSystemization of requirements for operational quality control systems of meat products
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2025v86n2_Kutyansky_O-Systemization_of_requirements_83-86.pdf
Size:
124.03 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description: