Determination of hopper fullness of smart screw press using machine learning
dc.citation.epage | 168 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Комп’ютерні системи проектування. Теорія і практика | |
dc.citation.spage | 161 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Гавран, Володимир | |
dc.contributor.author | Лобур, Михайло | |
dc.contributor.author | Havran, Volodymyr | |
dc.contributor.author | Lobur, Mykhailo | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-11T09:52:33Z | |
dc.date.created | 2024-02-27 | |
dc.date.issued | 2024-02-27 | |
dc.description.abstract | Постановка проблеми. У цьому дослідженні розглядається проблема точного визначення заповненості чаші шнекового преса для оптимізації процесу відтиску олії. Наявні методи вимірювання на основі ваги або об’єму часто можуть давати неточні результати через змінну вагу олії на різних етапах екстракції, неоднорідність матеріалу, вплив навколишнього середовища та неточне калібрування приладу. Мета. Дослідження пропонує нове рішення за допомогою застосування машинного навчання, зокрема з метою розробки та перевірки методики, яка використовує акустичні сигнали для розрахунку завантаженості чаші шнекового преса. Методологія. Для реалізації цього рішення в дослідженні використовуються кількісні дослідження, збір і аналіз даних, машинне навчання. Метод заснований на обробці аудіоданих, отриманих від мікрофонів, розташованих біля шнека, і використання алгоритмів машинного навчання, таких як класифікація звуку. Процес навчання моделі відбувався із використанням інструменту Arduino. Результати. Результати цього дослідження, які сприяють ефективному аналізу даних за допомогою інструментів ML, демонструють, що рівень заповнення чаші шнекового преса може бути ефективно визначений за допомогою звукових сигналів і відповідних алгоритмів машинного навчання. Новизна. Безперечна перевага цього підходу полягає в його здатності автоматизувати процес моніторингу та оперативного керування шнековим пресом, тим самим покращуючи ефективність пристрою та економію ресурсів. Практична значущість. Запропонований підхід дозволяє автоматизувати процес визначення наповненості чаші та контролювати стан шнека за його звуковими характеристиками. Це рішення може бути використано в олійній промисловості для підвищення продуктивності шнекових пресів. Це дослідження підкреслює перспективність програм машинного навчання та потенціал майбутніх досліджень, спрямованих на покращення адаптивності моделі та розробку систем прогнозованого обслуговування. У подальшому це може революціонізувати моніторинг та операційні процеси в олійній галузі. | |
dc.description.abstract | Problem statement. This research addresses the challenge of accurately determining the fullness of the hopper within a screw press for optimal oil extraction efficiency and quality. Existing weight or volume-based measurement methods can often struggle with determining the feed hopper fullness due to variable oil weights during extraction stages, material heterogeneity, environmental influences and imprecise instrument calibration. Purpose. The study proposes a novel solution via the application of machine learning, specifically aiming to develop and validate a technique that uses acoustic signals to calculate screw press bowl load. Methodology. To implement this solution, the study uses quantitative research, data collection and data analysis, supervised learning. The method is based on the processing of audio data received from microphones located near the auger and the use of machine learning algorithms, such as sound classification. Model training process was facilitated by ML tool Arduino. Findings. The results of this study, facilitated by effective data analysis via ML tools, demonstrate that the evaluated filling level of the screw press hopper can effectively be determined by the sound signals produced and corresponding machine learning algorithms. Originality. The distinct advantage of this approach lies in its ability to automate the monitoring and operational control process of the oil press, thereby improving device efficiency and resource conservation. Practical value. The proposed approach allows to automate the process of determining the fullness of the bowl and monitor the condition of the auger by its sound characteristics. This solution can be utilized in the oil production industry to enhance the productivity of the screw presses. This research underscores the promise of machine learning applications and the potential for future research focusing on improving model adaptability and developing predictive maintenance systems. These future investigative scopes could essentially revolutionize monitoring and operational practices within the oil extraction industry. | |
dc.format.extent | 161-168 | |
dc.format.pages | 8 | |
dc.identifier.citation | Havran V. Determination of hopper fullness of smart screw press using machine learning / Volodymyr Havran, Mykhailo Lobur // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 161–168. | |
dc.identifier.citationen | Havran V. Determination of hopper fullness of smart screw press using machine learning / Volodymyr Havran, Mykhailo Lobur // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 161–168. | |
dc.identifier.doi | doi.org/10.23939/cds2024.01.161 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64107 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Комп’ютерні системи проектування. Теорія і практика, 1 (6), 2024 | |
dc.relation.ispartof | Computer Systems of Design. Theory and Practice, 1 (6), 2024 | |
dc.relation.references | [1]. Kachur, O., Korendiy, V., Havran, V. (2023). Designing and simulation of an enhanced screw-type press for vegetable oil production. Computer Design Systems. Theory and Practice 5(1), 128–136. https://doi.org/10.23939/cds2023.01.128 | |
dc.relation.references | [2]. Pedretti, E. F., Del Gatto, A., Pieri, S., Mangoni, L., Ilari, A., Mancini, M., Duca, D. (2019). Experimental study to support local sunflower oil chains: Production of cold pressed oil in Central Italy. Agriculture (Switzerland), 9(11). https://doi.org/10.3390/agriculture9110231 | |
dc.relation.references | [3]. Melnyk, M., Pytel, K., Orynchak, M., Tomyuk, V., Havran. V. (2022). Analysis of Artificial Intelligence Methods for Rail Transport Traffic Noise Detection. Computer Design Systems. Theory and Practice 4 (1), 107-116. https://doi:10.23939/cds2022.01.107. | |
dc.relation.references | [4]. Sharan, R. V., Rahimi-Ardabili, H. (2023, August 1). Detecting acute respiratory diseases in the pediatric population using cough sound features and machine learning: A systematic review. International Journal of Medical Informatics. Elsevier Ireland Ltd. https://doi.org/10.1016/j.ijmedinf.2023.105093 | |
dc.relation.references | [5]. Wardhany, V. A., Subono, Hidayat, A., Utami, S. W., Bastiana, D. S. (2022). Arduino Nano 33 BLE Sense Performance for Cough Detection by Using NN Classifier. In Proceeding - 6th International Conference on Information Technology, Information Systems and Electrical Engineering: Applying Data Sciences and Artificial Intelligence Technologies for Environmental Sustainability, ICITISEE 2022 (pp. 455–458). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICITISEE57756.2022.10057829 | |
dc.relation.references | [6]. Brusa, E., Delprete, C., Di Maggio, L. G. (2021). Deep transfer learning for machine diagnosis: From sound and music recognition to bearing fault detection. Applied Sciences (Switzerland), 11(24). https://doi.org/10.3390/app112411663 | |
dc.relation.references | [7]. Meiners, M., Mayr, A., & Franke, J. (2020). Process curve analysis with machine learning on the example of screw fastening and press-in processes. In Procedia CIRP (Vol. 97, pp. 166–171). Elsevier B.V. https://doi.org/10.1016/j.procir.2020.05.220 | |
dc.relation.references | [8]. Dobrojevic, M., & Bacanin, N. (2022, April 1). IoT as a Backbone of Intelligent Homestead Automation. Electronics (Switzerland). MDPI. https://doi.org/10.3390/electronics11071004 | |
dc.relation.references | [9]. Jaiman, A., & Sharma, R. (2021). Optimizing The Smart Farming Using Artificial Intelligence Based Arduino Controller. Solid State Technology. Retrieved from http://www.solidstatetechnology.us/index.php/JSST/article/view/9972 | |
dc.relation.references | [10]. M. Fadhil, H., Kadhum, A., & Abdulkadhum, R. (2017). Multi-effectiveness Smart Home Monitoring System Based Artificial Intelligence through Arduino. Journal of Software, 12(7), 546–558. https://doi.org/10.17706/jsw.12.7.546-558 | |
dc.relation.references | [11]. Barrett, S. F. (2023). Artificial Intelligence and Machine Learning. In Synthesis Lectures on Digital Circuits and Systems (pp. 95–122). Springer Nature. https://doi.org/10.1007/978-3-031-21877-4_4 | |
dc.relation.references | [12]. Preprint, E., Bharath Gowda, M., Abhilash, M. K., Pakeerappa, K., Bharath, B. M., Suchithra, M., K, A. M. (2022). A Review on Smart Warehouse Management System. Easy Chair Preprint. | |
dc.relation.references | [13]. Edwin, B., Veemaraj, E., Parthiban, P., Devarajan, J. P., Mariadhas, V., Arumuganainar, A., Reddy, M. (2022). Smart agriculture monitoring system for outdoor and hydroponic environments. Indonesian Journal of Electrical Engineering and Computer Science, 25(3), 1679–1687. https://doi.org/10.11591/ijeecs.v25.i3.pp1679-1687 | |
dc.relation.references | [14]. Garett, R., Young, S. D. (2023). The role of artificial intelligence and predictive analytics in social audio and broader behavioral research. Decision Analytics Journal, 6. https://doi.org/10.1016/j.dajour.2023.100187 | |
dc.relation.references | [15]. AlShorman, O., Alkahatni, F., Masadeh, M., Irfan, M., Glowacz, A., Althobiani, F., Glowacz, W. (2021). Sounds and acoustic emission-based early fault diagnosis of induction motor: A review study. Advances in Mechanical Engineering. SAGE Publications Inc. https://doi.org/10.1177/1687814021996915 | |
dc.relation.references | [16]. Household All Stainless Steel Oil Press Ltp200 Electric Small Household Commercial Cold And Hot Pressing Fully Automatic - Specialty Tools - AliExpress [Internet]. [cited 2024 Jan 10]. Available from: https://www.aliexpress.com/item/1005004330106945.html#navspecification | |
dc.relation.references | [17]. Edge Impulse [Internet]. Available from: https://mltools.arduino.cc/ | |
dc.relation.referencesen | [1]. Kachur, O., Korendiy, V., Havran, V. (2023). Designing and simulation of an enhanced screw-type press for vegetable oil production. Computer Design Systems. Theory and Practice 5(1), 128–136. https://doi.org/10.23939/cds2023.01.128 | |
dc.relation.referencesen | [2]. Pedretti, E. F., Del Gatto, A., Pieri, S., Mangoni, L., Ilari, A., Mancini, M., Duca, D. (2019). Experimental study to support local sunflower oil chains: Production of cold pressed oil in Central Italy. Agriculture (Switzerland), 9(11). https://doi.org/10.3390/agriculture9110231 | |
dc.relation.referencesen | [3]. Melnyk, M., Pytel, K., Orynchak, M., Tomyuk, V., Havran. V. (2022). Analysis of Artificial Intelligence Methods for Rail Transport Traffic Noise Detection. Computer Design Systems. Theory and Practice 4 (1), 107-116. https://doi:10.23939/cds2022.01.107. | |
dc.relation.referencesen | [4]. Sharan, R. V., Rahimi-Ardabili, H. (2023, August 1). Detecting acute respiratory diseases in the pediatric population using cough sound features and machine learning: A systematic review. International Journal of Medical Informatics. Elsevier Ireland Ltd. https://doi.org/10.1016/j.ijmedinf.2023.105093 | |
dc.relation.referencesen | [5]. Wardhany, V. A., Subono, Hidayat, A., Utami, S. W., Bastiana, D. S. (2022). Arduino Nano 33 BLE Sense Performance for Cough Detection by Using NN Classifier. In Proceeding - 6th International Conference on Information Technology, Information Systems and Electrical Engineering: Applying Data Sciences and Artificial Intelligence Technologies for Environmental Sustainability, ICITISEE 2022 (pp. 455–458). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICITISEE57756.2022.10057829 | |
dc.relation.referencesen | [6]. Brusa, E., Delprete, C., Di Maggio, L. G. (2021). Deep transfer learning for machine diagnosis: From sound and music recognition to bearing fault detection. Applied Sciences (Switzerland), 11(24). https://doi.org/10.3390/app112411663 | |
dc.relation.referencesen | [7]. Meiners, M., Mayr, A., & Franke, J. (2020). Process curve analysis with machine learning on the example of screw fastening and press-in processes. In Procedia CIRP (Vol. 97, pp. 166–171). Elsevier B.V. https://doi.org/10.1016/j.procir.2020.05.220 | |
dc.relation.referencesen | [8]. Dobrojevic, M., & Bacanin, N. (2022, April 1). IoT as a Backbone of Intelligent Homestead Automation. Electronics (Switzerland). MDPI. https://doi.org/10.3390/electronics11071004 | |
dc.relation.referencesen | [9]. Jaiman, A., & Sharma, R. (2021). Optimizing The Smart Farming Using Artificial Intelligence Based Arduino Controller. Solid State Technology. Retrieved from http://www.solidstatetechnology.us/index.php/JSST/article/view/9972 | |
dc.relation.referencesen | [10]. M. Fadhil, H., Kadhum, A., & Abdulkadhum, R. (2017). Multi-effectiveness Smart Home Monitoring System Based Artificial Intelligence through Arduino. Journal of Software, 12(7), 546–558. https://doi.org/10.17706/jsw.12.7.546-558 | |
dc.relation.referencesen | [11]. Barrett, S. F. (2023). Artificial Intelligence and Machine Learning. In Synthesis Lectures on Digital Circuits and Systems (pp. 95–122). Springer Nature. https://doi.org/10.1007/978-3-031-21877-4_4 | |
dc.relation.referencesen | [12]. Preprint, E., Bharath Gowda, M., Abhilash, M. K., Pakeerappa, K., Bharath, B. M., Suchithra, M., K, A. M. (2022). A Review on Smart Warehouse Management System. Easy Chair Preprint. | |
dc.relation.referencesen | [13]. Edwin, B., Veemaraj, E., Parthiban, P., Devarajan, J. P., Mariadhas, V., Arumuganainar, A., Reddy, M. (2022). Smart agriculture monitoring system for outdoor and hydroponic environments. Indonesian Journal of Electrical Engineering and Computer Science, 25(3), 1679–1687. https://doi.org/10.11591/ijeecs.v25.i3.pp1679-1687 | |
dc.relation.referencesen | [14]. Garett, R., Young, S. D. (2023). The role of artificial intelligence and predictive analytics in social audio and broader behavioral research. Decision Analytics Journal, 6. https://doi.org/10.1016/j.dajour.2023.100187 | |
dc.relation.referencesen | [15]. AlShorman, O., Alkahatni, F., Masadeh, M., Irfan, M., Glowacz, A., Althobiani, F., Glowacz, W. (2021). Sounds and acoustic emission-based early fault diagnosis of induction motor: A review study. Advances in Mechanical Engineering. SAGE Publications Inc. https://doi.org/10.1177/1687814021996915 | |
dc.relation.referencesen | [16]. Household All Stainless Steel Oil Press Ltp200 Electric Small Household Commercial Cold And Hot Pressing Fully Automatic - Specialty Tools - AliExpress [Internet]. [cited 2024 Jan 10]. Available from: https://www.aliexpress.com/item/1005004330106945.html#navspecification | |
dc.relation.referencesen | [17]. Edge Impulse [Internet]. Available from: https://mltools.arduino.cc/ | |
dc.relation.uri | https://doi.org/10.23939/cds2023.01.128 | |
dc.relation.uri | https://doi.org/10.3390/agriculture9110231 | |
dc.relation.uri | https://doi:10.23939/cds2022.01.107 | |
dc.relation.uri | https://doi.org/10.1016/j.ijmedinf.2023.105093 | |
dc.relation.uri | https://doi.org/10.1109/ICITISEE57756.2022.10057829 | |
dc.relation.uri | https://doi.org/10.3390/app112411663 | |
dc.relation.uri | https://doi.org/10.1016/j.procir.2020.05.220 | |
dc.relation.uri | https://doi.org/10.3390/electronics11071004 | |
dc.relation.uri | http://www.solidstatetechnology.us/index.php/JSST/article/view/9972 | |
dc.relation.uri | https://doi.org/10.17706/jsw.12.7.546-558 | |
dc.relation.uri | https://doi.org/10.1007/978-3-031-21877-4_4 | |
dc.relation.uri | https://doi.org/10.11591/ijeecs.v25.i3.pp1679-1687 | |
dc.relation.uri | https://doi.org/10.1016/j.dajour.2023.100187 | |
dc.relation.uri | https://doi.org/10.1177/1687814021996915 | |
dc.relation.uri | https://www.aliexpress.com/item/1005004330106945.html#navspecification | |
dc.relation.uri | https://mltools.arduino.cc/ | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.rights.holder | © Havran V., Lobur M., 2024 | |
dc.subject | Arduino | |
dc.subject | витискання олії | |
dc.subject | автоматизація | |
dc.subject | розумні технології | |
dc.subject | звук | |
dc.subject | машинне навчання | |
dc.subject | Arduino | |
dc.subject | oil pressing | |
dc.subject | automation | |
dc.subject | smart technology | |
dc.subject | sound | |
dc.subject | machine learning | |
dc.title | Determination of hopper fullness of smart screw press using machine learning | |
dc.title.alternative | Визначення заповненості чаші шнекового смарт преса із використанням машинного навчання | |
dc.type | Article |
Files
License bundle
1 - 1 of 1