Апаратно-програмний комплекс оптичної ідентифікації пасивних інформаційних каналів безконтактних сенсорів тиску–температури
| dc.citation.epage | 182 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Інфокомунікаційні технології та електронна інженерія | |
| dc.citation.spage | 172 | |
| dc.citation.volume | 4 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Фечан, А. | |
| dc.contributor.author | Ховерко, Ю. | |
| dc.contributor.author | Далявський, В. | |
| dc.contributor.author | Дигдалович, Т. | |
| dc.contributor.author | Fechan, A. | |
| dc.contributor.author | Khoverko, Yu. | |
| dc.contributor.author | Dalyavskii, V. | |
| dc.contributor.author | Digladovich, T. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-11-03T11:06:29Z | |
| dc.date.created | 2024-12-10 | |
| dc.date.issued | 2024-12-10 | |
| dc.description.abstract | У роботі запропоновано унікальний метод створення пасивних, багатофункційних, безконтактних сенсорів тиску – температури. Метод оснований на поєднанні неорганічних напівпровідників та високомолекулярних органічних холестеричних кристалів. За морфологією такі кристали представляють спіральну структуру, яка чутлива до зміни зовнішніх фізичних чинників, наприклад температур, за рахунок зміни періодичності структури, що приводить до бреггівського дифракційного розсіювання світла на ній. Наслідком такого впливу є забарвлення холестерика, що можна ідентифікувати зовнішніми спектрочутливими пристроями на безконтактній основі. З іншого боку, використання неорганічних напівпровідників передбачає виготовлення мікропрофільованої основи з тонкою кремнієвою мембраною, чутливою до впливу зовнішнього тиску. Товщина мембрани визначає умови експлуатації сенсора залежно від діапазону прикладеного тиску – від 0,3 bar і вище. Для безперервного моніторингу зміни колірності пасивних сенсорів тиску – температури, відстежуючи спектральний розподіл інтен- сивності світла забарвлення рідкого кристала залежно від умов експлуатації на безконтактній основі зовнішнім спектрометром, розроблено апаратно-програмний комплекс. Основою такої системи є програмний модуль, створений із використанням шаблону архітектури MVVM (Model–View–View Model). Особливістю програмного модуля є використання фреймворків .NET таWPF, що нативно підтримують цей архітектурний шаблон для .NETWindows платформ і підтримуються усіма популярними версіями операційних систем. Для збереження даних у програмному застосунку використовується SQlite база даних, що являє собою систему управління реляційними базами даних. Для роботи та налаштування спектрометра було використано у системі бібліотеку OmniDriver. Програмний модуль має два режими роботи із спектрометрами. Для першого режиму характерно читання одного спектра, тоді як для друго- го – періодичне читання та обробка спектрального розподілу інтенсивності у реальному часі із заданим періодом. Під час використання другого режиму програмний модуль дає змогу динамічно змінювати періоди та параметри зміни колірних параметрів світла у часі. Основний алгоритм роботи програмного модуля – це перетворення спектрального розподілу інтен- сивності, що нормалізується у колірній моделі CIE XYZ, яка є базовою для усіх подальших обчислень у RGB-моделі. | |
| dc.description.abstract | The work proposes the use of a unique method of creating passive, multifunctional, non-contact pressure-temperature sensors. The basis of this method is a combination of inorganic semiconductors and high-molecular organic cholesteric crystals. According to their morphology, such crystals represent a spiral structure that is sensitive to changes in external physical factors, such as temperatures, due to changes in the periodicity of the structure, which leads to Bragg diffraction scattering of light on it. The consequence of such influence is the coloring of the cholesteric, which can be identified by external spectrosensitive devices on a non-contact basis. On the other hand, the use of inorganic semiconductors involves the production of a micro-profiled base with a thin silicon membrane that is sensitive to external pressure. The thickness of the membrane determines the operating conditions of the sensor depending on the range of applied pressure from 0.3 bar and above. A hardware and software complex was developed for continuous monitoring of changes in the color of passive pressure-temperature sensors, tracking the spectral distribution of the light intensity of the color of the liquid crystal depending on the operating conditions on a non-contact basis with an external spectrometer. The basis of such a system is a software module created on the basis of the MVVM (Model–View–View Model) architecture template. A feature of the software module is the use of the .NET and WPF frameworks, which natively support this architectural pattern for .NET Windows platforms and are supported by all popular versions of operating systems. The SQlite database, which is a relational database management system, is used to store data in the software application. The OmniDriver library was used in the system to operate and configure the spectrometer. The software module has two modes of operation with spectrometers. The first mode is characterized by the reading of a single spectrum, while the second mode is characterized by periodic reading and processing of the intensity spectral distribution in real time with a given period. When using the second mode, the software module allows you to dynamically change the periods and parameters of changing the color parameters of the light over time. The main algorithm of the software module is the transformation of the spectral intensity distribution normalized in the CIE XYZ color model, which is the basis for all further calculations, into the RGB model. | |
| dc.format.extent | 172-182 | |
| dc.format.pages | 11 | |
| dc.identifier.citation | Апаратно-програмний комплекс оптичної ідентифікації пасивних інформаційних каналів безконтактних сенсорів тиску–температури / А. Фечан, Ю. Ховерко, В. Далявський, Т. Дигдалович // Інфокомунікаційні технології та електронна інженерія. — Львів : Видавництво Львівської політехніки, 2024. — Том 4. — № 2. — С. 172–182. | |
| dc.identifier.citation2015 | Апаратно-програмний комплекс оптичної ідентифікації пасивних інформаційних каналів безконтактних сенсорів тиску–температури / Фечан А. та ін. // Інфокомунікаційні технології та електронна інженерія, Львів. 2024. Том 4. № 2. С. 172–182. | |
| dc.identifier.citationenAPA | Fechan, A., Khoverko, Yu., Dalyavskii, V., & Digladovich, T. (2024). Aparatno-prohramnyi kompleks optychnoi identyfikatsii pasyvnykh informatsiinykh kanaliv bezkontaktnykh sensoriv tysku–temperatury [Hardware & software complex of optical identification of passive information channels of non-contact pressure–temperature sensors]. Infocommunication technologies and electronic engineering, 4(2), 172-182. Lviv Politechnic Publishing House. [in Ukrainian]. | |
| dc.identifier.citationenCHICAGO | Fechan A., Khoverko Yu., Dalyavskii V., Digladovich T. (2024) Aparatno-prohramnyi kompleks optychnoi identyfikatsii pasyvnykh informatsiinykh kanaliv bezkontaktnykh sensoriv tysku–temperatury [Hardware & software complex of optical identification of passive information channels of non-contact pressure–temperature sensors]. Infocommunication technologies and electronic engineering (Lviv), vol. 4, no 2, pp. 172-182 [in Ukrainian]. | |
| dc.identifier.doi | https://doi.org/10.23939/ictee2024.02.172 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/116922 | |
| dc.language.iso | uk | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Інфокомунікаційні технології та електронна інженерія, 2 (4), 2024 | |
| dc.relation.ispartof | Infocommunication technologies and electronic engineering, 2 (4), 2024 | |
| dc.relation.references | [1] Dominguez M., Pau J.-L., Redondo-Cubero A. (2024), “Photosensing properties of zinc nitride thin-film transistors fabricated on recyclable plastic substrates”, The European Physical Journal Applied Physics, vol. 99, pp. 1–6. https://doi.org/10.1051/epjap/2024230169 | |
| dc.relation.references | [2] John P., Al Khalfioui M., Deparis C. et al. (2021), “Epitaxial Zn3N2 thin films by molecular beam epitaxy: Structural, electrical, and optical properties”, J. Appl. Phys. 130, no. 6, p. 065104 https://doi.org/10.1063/5.0057307 | |
| dc.relation.references | [3] Druzhinin, A., Ostrovskii, I., Khoverko, Yu. et al. (2018),”Nanoscale polysilicon in sensors of physical values at cryogenic temperatures”, Journal of Material Science: Materials in Electronics, vol. 29, no. 10, pp. 8364–8370. https://doi.org/10.1007/s10854-018-8847-0 | |
| dc.relation.references | [4] Holota V., Kogut I., Druzhinin A., Khoverko Yu. (2014), “High sensitive active MOS:photo-detector on the local 3D-SOI-structure”, Adv. Mat. Res., vol. 854, pp. 45–4. https://doi.org/10.4028/www.scientific.net/AMR.854.45 | |
| dc.relation.references | [5] Tyler J. Flack, Bejoy N. Pushpakaran, Stephen B. Bayne (2016), “GaN Technology for Power Electronic Applications: A Review”, J. Electron. Mater., vol. 45, pp. 2673–2682. https://doi.org/10.1007/s11664-016-4435-3 | |
| dc.relation.references | [6] Wolinski T. R., Bock W. J., Jarmolik A. (1999), “Development of fiber optic liquid crystal sensor for pressure measurement”, IEEE Trans. on Instr. & Measur., vol. 48, no. 1, pp. 2–6. https://doi.org/10.1109/19.755041 | |
| dc.relation.references | [7] Namkung J., Lindquist R., Abu-Abed A. (2008), “Application to shear force sensors by homeotropic liquid crystal (LC) orientation”, IEEE SoutheastCon, p. 80. https://doi.org/10.1109/SECON.2008.4494260 | |
| dc.relation.references | [8] Sakuraia T., Ohashia T., Kitazumea H., Kubotab M., Suemasua T., Akimotoa K. (2011),”Structural control of organic solar cells based on nonplanar metallophthalocyanine / C60 heterojunctions using organic buffer layers,” Organic Electronics, vol. 12, no. 6, pp. 966–973. https://doi.org/10.1016/j.orgel.2011.03.016 | |
| dc.relation.references | [9] Miyadera T., Wang Z., Yamanari T., Matsubara K.,Yoshida Yu. (2014), “ Efficiency limit analysis of organic solar cells: model simulation based on vanadyl phthalocyanine / C60 planar junction cell,” Japanese Journal of Applied Physics, vol. 53, no. 1S, pp. 125–129. https://doi.org/10.7567/JJAP.53.01AB12 | |
| dc.relation.references | [10] Seidel H., Csepregi L., Heuberger A., Baumgartel H. (1990), “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions”, J. Electrochem. Soc., vol. 137, no. 11, pp. 3612–3625. https://doi.org/10.1149/1.2086277 | |
| dc.relation.references | [11] Schroder H., Obermeier E., Steckenborn A. (1999), “Micropiramidal hillocks on KOH etched {100} silicon surfaces: formation, prevention and removal”, Journal Micromechanics and Microengeeniring, vol. 9, pp. 139–145. https://doi.org/10.1088/0960-1317/9/2/309 | |
| dc.relation.references | [12] Schanda, J. (2007), CIE colorimetry. Colorimetry: Understanding the CIE system, pp. 25–78 https://doi.org/10.1002/9780470175637 | |
| dc.relation.references | [13] Li C., Cui G., Melgosa M., Ruan X., Zhang Y., Ma L., Xiao K., Luo Ronnier M. (2016), “Accurate method for computing correlated color temperature”, Optical Expres, vol. 24, no. 13, pp. 14066–14078. https://doi.org/10.1364/OE.24.014066 | |
| dc.relation.references | [14] Jost S., Cauwerts C., Avouac P. (2018), “CIE 2017 color fidelity index Rf: a better index to predict perceived color difference?”, Journal Optical Society of America, vol. 35, no. 4, pp. B202–B213 https://doi.org/10.1364/josaa.35.00b202 | |
| dc.relation.references | [15] Ocean Optics Omni Driver Programming Guide available at: https://www.oceaninsight.com/ globalassets/catalog-blocks-and-images/software-downloads-installers/omnidriver_programming_manual.pdf. | |
| dc.relation.references | [16] Dyhdalovych T., Fechan A., Kutsiy S., Melnykov S. (2022), “Development of the automated system of analysis and quality assessment of visible light sources”, Intern. conf. TCSET-2022, pp. 694–697. https://doi.org/10.1109/TCSET55632.2022.9767066 | |
| dc.relation.references | [17] Baranskyi P. I., Fedorov A. V., Gaidar G. P. (2000), Physical properties of Si and Ge crystals in the fields of effective external influence, Lutsk: Nastyrya, 280 (in Ukrainian). | |
| dc.relation.references | [18] Aksimentyeva O., Konopelnik O., Cherpak V., Stakhira P., Fechan A., Hlushyk I. (2005), “Conjugated polyaminoarenes as electrochromic layers for non-emissive displays”, Ukr. Journ. of Phys. Opt., vol. 6, no. 1, pp. 27–32. http://dx.doi.org/10.3116/16091833/6/1/27/2005 | |
| dc.relation.references | [19] Ilchishin I. P., Yaroshchuk O. V., Shaidyuk E. A. (2005), “Phototuning of the lasing spectra of doped cholesteric liquid crystals,” Ukrainian Journal of Physics: Optics. Quantum Electronics. Holography, vol. 50, no. 12,pp. 1333–1338. https://www.researchgate.net/publication/ 261111202_Phototuning_of_the_Lasing_ Spectra_of_Doped_Cholesteric_Liquid_Crystals | |
| dc.relation.references | [20] Dudok T. H., Savaryn V. I., Krupych O. M., Fechan A. V., Lychkovskyy E., Cherpak V. V., Pansu B., Nastishin Yu. A. (2014), “Lasing in imperfectly aligned cholesterics”, Journ. of Appl. opt., vol. 54, no. 33, pp. 9644–9653. https://doi.org/10.1364/AO.54.009644 | |
| dc.relation.references | [21] CIE. (2006),”Fundamental chromaticity diagram with physiological axes”, Parts 1&2. Technical Report, 170-1. Vienna: Central Bureau of the Commission Internationale de l' Éclairage. | |
| dc.relation.references | [22] Windows Presentation Fundation.Documentation available at: https://docs.microsoft.com/enus/ dotnet/desktop/wpf/?view= netdesktop-6.0. | |
| dc.relation.references | [23] SQLite. Documentation available at: https://www.sqlite.org/docs.html. | |
| dc.relation.referencesen | [1] Dominguez M., Pau J.-L., Redondo-Cubero A. (2024), "Photosensing properties of zinc nitride thin-film transistors fabricated on recyclable plastic substrates", The European Physical Journal Applied Physics, vol. 99, pp. 1–6. https://doi.org/10.1051/epjap/2024230169 | |
| dc.relation.referencesen | [2] John P., Al Khalfioui M., Deparis C. et al. (2021), "Epitaxial Zn3N2 thin films by molecular beam epitaxy: Structural, electrical, and optical properties", J. Appl. Phys. 130, no. 6, p. 065104 https://doi.org/10.1063/5.0057307 | |
| dc.relation.referencesen | [3] Druzhinin, A., Ostrovskii, I., Khoverko, Yu. et al. (2018),"Nanoscale polysilicon in sensors of physical values at cryogenic temperatures", Journal of Material Science: Materials in Electronics, vol. 29, no. 10, pp. 8364–8370. https://doi.org/10.1007/s10854-018-8847-0 | |
| dc.relation.referencesen | [4] Holota V., Kogut I., Druzhinin A., Khoverko Yu. (2014), "High sensitive active MOS:photo-detector on the local 3D-SOI-structure", Adv. Mat. Res., vol. 854, pp. 45–4. https://doi.org/10.4028/www.scientific.net/AMR.854.45 | |
| dc.relation.referencesen | [5] Tyler J. Flack, Bejoy N. Pushpakaran, Stephen B. Bayne (2016), "GaN Technology for Power Electronic Applications: A Review", J. Electron. Mater., vol. 45, pp. 2673–2682. https://doi.org/10.1007/s11664-016-4435-3 | |
| dc.relation.referencesen | [6] Wolinski T. R., Bock W. J., Jarmolik A. (1999), "Development of fiber optic liquid crystal sensor for pressure measurement", IEEE Trans. on Instr. & Measur., vol. 48, no. 1, pp. 2–6. https://doi.org/10.1109/19.755041 | |
| dc.relation.referencesen | [7] Namkung J., Lindquist R., Abu-Abed A. (2008), "Application to shear force sensors by homeotropic liquid crystal (LC) orientation", IEEE SoutheastCon, p. 80. https://doi.org/10.1109/SECON.2008.4494260 | |
| dc.relation.referencesen | [8] Sakuraia T., Ohashia T., Kitazumea H., Kubotab M., Suemasua T., Akimotoa K. (2011),"Structural control of organic solar cells based on nonplanar metallophthalocyanine, P.60 heterojunctions using organic buffer layers," Organic Electronics, vol. 12, no. 6, pp. 966–973. https://doi.org/10.1016/j.orgel.2011.03.016 | |
| dc.relation.referencesen | [9] Miyadera T., Wang Z., Yamanari T., Matsubara K.,Yoshida Yu. (2014), " Efficiency limit analysis of organic solar cells: model simulation based on vanadyl phthalocyanine, P.60 planar junction cell," Japanese Journal of Applied Physics, vol. 53, no. 1S, pp. 125–129. https://doi.org/10.7567/JJAP.53.01AB12 | |
| dc.relation.referencesen | [10] Seidel H., Csepregi L., Heuberger A., Baumgartel H. (1990), "Anisotropic Etching of Crystalline Silicon in Alkaline Solutions", J. Electrochem. Soc., vol. 137, no. 11, pp. 3612–3625. https://doi.org/10.1149/1.2086277 | |
| dc.relation.referencesen | [11] Schroder H., Obermeier E., Steckenborn A. (1999), "Micropiramidal hillocks on KOH etched {100} silicon surfaces: formation, prevention and removal", Journal Micromechanics and Microengeeniring, vol. 9, pp. 139–145. https://doi.org/10.1088/0960-1317/9/2/309 | |
| dc.relation.referencesen | [12] Schanda, J. (2007), CIE colorimetry. Colorimetry: Understanding the CIE system, pp. 25–78 https://doi.org/10.1002/9780470175637 | |
| dc.relation.referencesen | [13] Li C., Cui G., Melgosa M., Ruan X., Zhang Y., Ma L., Xiao K., Luo Ronnier M. (2016), "Accurate method for computing correlated color temperature", Optical Expres, vol. 24, no. 13, pp. 14066–14078. https://doi.org/10.1364/OE.24.014066 | |
| dc.relation.referencesen | [14] Jost S., Cauwerts C., Avouac P. (2018), "CIE 2017 color fidelity index Rf: a better index to predict perceived color difference?", Journal Optical Society of America, vol. 35, no. 4, pp. B202–B213 https://doi.org/10.1364/josaa.35.00b202 | |
| dc.relation.referencesen | [15] Ocean Optics Omni Driver Programming Guide available at: https://www.oceaninsight.com/ globalassets/catalog-blocks-and-images/software-downloads-installers/omnidriver_programming_manual.pdf. | |
| dc.relation.referencesen | [16] Dyhdalovych T., Fechan A., Kutsiy S., Melnykov S. (2022), "Development of the automated system of analysis and quality assessment of visible light sources", Intern. conf. TCSET-2022, pp. 694–697. https://doi.org/10.1109/TCSET55632.2022.9767066 | |
| dc.relation.referencesen | [17] Baranskyi P. I., Fedorov A. V., Gaidar G. P. (2000), Physical properties of Si and Ge crystals in the fields of effective external influence, Lutsk: Nastyrya, 280 (in Ukrainian). | |
| dc.relation.referencesen | [18] Aksimentyeva O., Konopelnik O., Cherpak V., Stakhira P., Fechan A., Hlushyk I. (2005), "Conjugated polyaminoarenes as electrochromic layers for non-emissive displays", Ukr. Journ. of Phys. Opt., vol. 6, no. 1, pp. 27–32. http://dx.doi.org/10.3116/16091833/6/1/27/2005 | |
| dc.relation.referencesen | [19] Ilchishin I. P., Yaroshchuk O. V., Shaidyuk E. A. (2005), "Phototuning of the lasing spectra of doped cholesteric liquid crystals," Ukrainian Journal of Physics: Optics. Quantum Electronics. Holography, vol. 50, no. 12,pp. 1333–1338. https://www.researchgate.net/publication/ 261111202_Phototuning_of_the_Lasing_ Spectra_of_Doped_Cholesteric_Liquid_Crystals | |
| dc.relation.referencesen | [20] Dudok T. H., Savaryn V. I., Krupych O. M., Fechan A. V., Lychkovskyy E., Cherpak V. V., Pansu B., Nastishin Yu. A. (2014), "Lasing in imperfectly aligned cholesterics", Journ. of Appl. opt., vol. 54, no. 33, pp. 9644–9653. https://doi.org/10.1364/AO.54.009644 | |
| dc.relation.referencesen | [21] CIE. (2006),"Fundamental chromaticity diagram with physiological axes", Parts 1&2. Technical Report, 170-1. Vienna: Central Bureau of the Commission Internationale de l' Éclairage. | |
| dc.relation.referencesen | [22] Windows Presentation Fundation.Documentation available at: https://docs.microsoft.com/enus/ dotnet/desktop/wpf/?view= netdesktop-6.0. | |
| dc.relation.referencesen | [23] SQLite. Documentation available at: https://www.sqlite.org/docs.html. | |
| dc.relation.uri | https://doi.org/10.1051/epjap/2024230169 | |
| dc.relation.uri | https://doi.org/10.1063/5.0057307 | |
| dc.relation.uri | https://doi.org/10.1007/s10854-018-8847-0 | |
| dc.relation.uri | https://doi.org/10.4028/www.scientific.net/AMR.854.45 | |
| dc.relation.uri | https://doi.org/10.1007/s11664-016-4435-3 | |
| dc.relation.uri | https://doi.org/10.1109/19.755041 | |
| dc.relation.uri | https://doi.org/10.1109/SECON.2008.4494260 | |
| dc.relation.uri | https://doi.org/10.1016/j.orgel.2011.03.016 | |
| dc.relation.uri | https://doi.org/10.7567/JJAP.53.01AB12 | |
| dc.relation.uri | https://doi.org/10.1149/1.2086277 | |
| dc.relation.uri | https://doi.org/10.1088/0960-1317/9/2/309 | |
| dc.relation.uri | https://doi.org/10.1002/9780470175637 | |
| dc.relation.uri | https://doi.org/10.1364/OE.24.014066 | |
| dc.relation.uri | https://doi.org/10.1364/josaa.35.00b202 | |
| dc.relation.uri | https://www.oceaninsight.com/ | |
| dc.relation.uri | https://doi.org/10.1109/TCSET55632.2022.9767066 | |
| dc.relation.uri | http://dx.doi.org/10.3116/16091833/6/1/27/2005 | |
| dc.relation.uri | https://www.researchgate.net/publication/ | |
| dc.relation.uri | https://doi.org/10.1364/AO.54.009644 | |
| dc.relation.uri | https://docs.microsoft.com/enus/ | |
| dc.relation.uri | https://www.sqlite.org/docs.html | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2024 | |
| dc.subject | кремній | |
| dc.subject | рідкий кристал | |
| dc.subject | температура | |
| dc.subject | тиск | |
| dc.subject | програмний модуль | |
| dc.subject | спектральний розподіл інтенсивності | |
| dc.subject | індекс передавання кольору (CRI) | |
| dc.subject | RGB | |
| dc.subject | silicon | |
| dc.subject | liquid crystal | |
| dc.subject | temperature | |
| dc.subject | pressure | |
| dc.subject | software module | |
| dc.subject | spectral intensity distribution | |
| dc.subject | color rendering index (CRI) | |
| dc.subject | RGB | |
| dc.subject.udc | 621.315.592 | |
| dc.title | Апаратно-програмний комплекс оптичної ідентифікації пасивних інформаційних каналів безконтактних сенсорів тиску–температури | |
| dc.title.alternative | Hardware & software complex of optical identification of passive information channels of non-contact pressure–temperature sensors | |
| dc.type | Article |