Одержання антисептичних гідрогелевих пластин на основі природних полісахаридів
dc.citation.epage | 184 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Chemistry, Technology and Application of Substances | |
dc.citation.spage | 178 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Інститут біології тварин НААН | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Institute of Animal Biology of NAAS | |
dc.contributor.author | Дронь, І. А. | |
dc.contributor.author | Букартик, Н. М. | |
dc.contributor.author | Букартик, М. М. | |
dc.contributor.author | Остапів, Д. Д. | |
dc.contributor.author | Самарик, В. Я. | |
dc.contributor.author | Dron, I. A. | |
dc.contributor.author | Bukartyk, M. M. | |
dc.contributor.author | Bukartyk, N. M. | |
dc.contributor.author | Ostapiv, D. D. | |
dc.contributor.author | Samaryk, V. Ya. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-05T07:39:13Z | |
dc.date.created | 2005-03-01 | |
dc.date.issued | 2005-03-01 | |
dc.description.abstract | Із використанням природних полісахаридів, пектину та альгінату натрію одержано гідрогелеві пластини, здатні до абсорбції ексудату. Проведені дослідження показали відсутність цитотоксичності матеріалу пластин. З метою створення на їх основі бактерицидних лікувальних пов’язок продемонстровано можливість наповнення пластин антисептичними засобами (йодом, бетадином, хлоргексидином) та досліджено динаміку їх вивільнення. Дослідження показали, що вивільнення йоду зі складу пластини є надто швидким і не може задовольнити умову його пролонгованого вивільнення. Встановлено, що бетадин і хлоргексидин вивільняються зі складу пластини пролонговано. | |
dc.description.abstract | Using natural polysaccharides, pectin and sodium alginate, hydrogel plates capable of absorbing exudate were obtained. Studies have shown no cytotoxicity of the plate material. In order to create bactericidal therapeutic dressings based on them, the possibility of filling the plates with antiseptics (iodine, betadine, chlorhexidine) was shown and their release dynamics was studied. Studies have shown that the release of iodine from the plate is too fast and can not meet the condition of its prolonged release in contrast to betadine and chlorhexidine. | |
dc.format.extent | 178-184 | |
dc.format.pages | 7 | |
dc.identifier.citation | Одержання антисептичних гідрогелевих пластин на основі природних полісахаридів / І. А. Дронь, Н. М. Букартик, М. М. Букартик, Д. Д. Остапів, В. Я. Самарик // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 2. — С. 178–184. | |
dc.identifier.citationen | Preparation of antiseptic hydrogel plates based on natural polysaccharides / I. A. Dron, M. M. Bukartyk, N. M. Bukartyk, D. D. Ostapiv, V. Ya. Samaryk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 2. — P. 178–184. | |
dc.identifier.doi | doi.org/10.23939/ctas2022.02.178 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63652 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (5), 2022 | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (5), 2022 | |
dc.relation.references | 1. Tavakoli, S., Klar, A. S. (2020). Advanced Hydrogels as Wound Dressings. Biomolecules, 10(8), 1169. DOI: https://doi.org/10.3390/biom10081169 | |
dc.relation.references | 2. Mantha, S., Pillai, S., Khayambashi, P., Upadhyay, A., Zhang, Y., Tao, O. (2019). Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials, 12, 3323-3356. DOI: https://doi.org/10.3390/ma12203323 | |
dc.relation.references | 3. Catoira, M., Fusaro, L., Di Francesco, D., Ramella, M. (2019). Overview of natural hydrogels for regenerative medicine applications. Journal of Materials Science Materials in Medicine, 30, 105-115. DOI: https://doi.org/10.1007/s10856-019-6318-7 | |
dc.relation.references | 4. Samchenko, Y., Korotych, O., Kernosenko, L., Poltoratska, T., Pasmurtseva, N. (2018). Stimuli-responsive hybrid porous polymers based on acetals of polyvinyl alcohol and acrylic hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 544, 91-104. DOI: https://doi.org/10.1016/j.colsurfa.2018.02.015 | |
dc.relation.references | 5. Barbetta, A., Barigelli, E., Dentini, M. (2009). Porous Alginate Hydrogels: Synthetic Methods for Tailoring the Porous Texture. Biomacromolecules, 10, 2328-2337. DOI: https://doi.org/10.1021/bm900517q | |
dc.relation.references | 6. Rezvanian, M., Ahmad, N., Mohd Amin, M. C. I., Ng, S. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. International Journal of Biological Macromolecules, 97, 131-140. DOI: https://doi.org/10.1016/j.ijbiomac.2016.12.079 | |
dc.relation.references | 7. Tummalapalli, M., Berthet, M., Verrier, B., Deopura, B. L., Alam, M. S., Gupta, B. (2016). Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents. International Journal of Biological Macromolecules, 82, 104-113. DOI: https://doi.org/10.1016/j.ijbiomac.2015.10.087 | |
dc.relation.references | 8. Weller, C. D., Team, V., Sussman, G. (2020). First-Line Interactive Wound Dressing Update: A Com- prehensive Review of the Evidence. Frontiers in phar- macology, 11, 155-179. DOI: https://doi.org/10.3389/fphar.2020.00155 | |
dc.relation.references | 9. Lucília P. da Silva, Rui L. Reis, Vitor M. Correlo, Alexandra P. Marques. (2019). Hydrogel-Based Strategies to Advance Therapies for Chronic Skin Wounds. Annual Review of Biomedical Engineering, 21, 145-169. DOI: https://doi.org/10.1146/annurev-bioeng-060418-052422 | |
dc.relation.references | 10. Ehterami, A., Salehi, M., Farzamfar, S., Samadian, H., Vaez, A., Sahrapeyma, H., Ghorbani, S. (2020). A promising wound dressing based on alginate hydrogels containing vitamin D3 cross-linked by calcium carbonate/d-glucono-δ-lactone, Biomedical Engineering Letters, 10, 309-319. DOI: https://doi.org/10.1007/s13534-020-00155-8 | |
dc.relation.references | 11. Stoica, A. E., Chircov, C., Grumezescu, A. M. (2020). Hydrogel Dressings for the Treatment of Burn Wounds: An Up-To-Date Overview. Materials, 13, 2853- 2877. DOI: https://doi.org/10.3390/ma13122853 | |
dc.relation.references | 12. Narayanaswamy, R., Torchilin, V. P. (2019). Hydrogels and Their Applications in Targeted Drug Delivery. Molecules, 24 (3), 603-624. DOI: https://doi.org/10.3390/molecules24030603 | |
dc.relation.references | 13. Palii, H. K, Nechytailo, M. Ie., Kovalchuk, V. P. ta in. (2010). Porivnialna kharakterystyka antyseptychnoi aktyvnosti dekametoksynu ta furatsylinu. Zdorovia Ukrainy, 22 (251), 56-57. | |
dc.relation.references | 14. Giordano, S., Peltoniemi, H., Lilius, P., Salmi, A. (2013). Povidone-iodine combined with antibiotic topical irrigation to reduce capsular contracture in cosmetic breast augmentation: a comparative study. Aesthetic Surgery Journal, 33(5), 675-680. DOI: https://doi.org/10.1177/1090820X13491490 | |
dc.relation.references | 15. Bigliardi, P. L., Alsagoff, SAL., El-Kafrawi, H. Y., Pyon, J. K., Wa C. T. C., Villa, M. A. (2017). Povidone iodine in wound healing: A review of current concepts and practices. International Journal of Surgery, 44, 260-268. DOI: https://doi.org/10.1016/j.ijsu.2017.06.073 | |
dc.relation.references | 16. Syhhya, S., Khanna, Dzh. H. (1983). Kolichestvennyiy organicheskiy analiz po funktsionalnyim gruppam. M.: Khimiia. | |
dc.relation.references | 17. Dron, I., Stasiuk, A., Bukartyk, M., Luhova, Yu., Samaryk, V. (2020). Formuvannia hidroheliv na osnovi pektynu z riznym stupenem esteryfikatsii. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 3 (1), 239-244. https://doi.org/10.23939/ctas2020.01.239 | |
dc.relation.references | 18. Zhang, K., Feng, W., Jin, C. (2020). Protocol efficiently measuring the swelling rate of hydrogels. Methods X., 7. DOI: https://doi.org/10.1016/j.mex.2019.100779 | |
dc.relation.references | 19. Chukhrii, B. M., Klevets, L. O., Ostapiv, D. D. (1995). Kolorymetrychnyi sposib vyznachennia aktyvnosti suktsynatdehidrohenazy v spermi buhaiv. Visnyk ahrarnoi nauky, 11, 73-76. | |
dc.relation.references | 20. Yapeng Fang, Saphwan Al-Assaf, Glyn, O. Phillips, Katsuyoshi Nishinari, Takahiro Funami, Peter A. Williams. (2008). Binding behavior of calcium to polyu- ronates: Comparison of pectin with alginate. Carbohydrate Polymers, 72, 334-341. DOI: https://doi.org/10.1016/j.carbpol.2007.08.021 | |
dc.relation.references | 21. Peles, Z., Zilberman M. (2012). Novel soy protein wound dressings with controlled antibiotic release: mechanical and physical properties, Acta Biomaterіalia, 8(1), 209-217. DOI: https://doi.org/10.1016/j.actbio.2011.08.022 | |
dc.relation.references | 22. Moulay, S. (2013). Molecular iodine-polymer complexes. Journal of Polymer Engineering, 33(5), 389- 443. DOI: https://doi.org/10.1515/polyeng-2012-0122 | |
dc.relation.references | 23. Hansch, C., Fujita, T. (1963) ρ-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. Journal of the American Chemical Society, 86, 1616-1626. https://doi.org/10.1021/ja01062a035 | |
dc.relation.referencesen | 1. Tavakoli, S., Klar, A. S. (2020). Advanced Hydrogels as Wound Dressings. Biomolecules, 10(8), 1169. DOI: https://doi.org/10.3390/biom10081169 | |
dc.relation.referencesen | 2. Mantha, S., Pillai, S., Khayambashi, P., Upadhyay, A., Zhang, Y., Tao, O. (2019). Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials, 12, 3323-3356. DOI: https://doi.org/10.3390/ma12203323 | |
dc.relation.referencesen | 3. Catoira, M., Fusaro, L., Di Francesco, D., Ramella, M. (2019). Overview of natural hydrogels for regenerative medicine applications. Journal of Materials Science Materials in Medicine, 30, 105-115. DOI: https://doi.org/10.1007/s10856-019-6318-7 | |
dc.relation.referencesen | 4. Samchenko, Y., Korotych, O., Kernosenko, L., Poltoratska, T., Pasmurtseva, N. (2018). Stimuli-responsive hybrid porous polymers based on acetals of polyvinyl alcohol and acrylic hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 544, 91-104. DOI: https://doi.org/10.1016/j.colsurfa.2018.02.015 | |
dc.relation.referencesen | 5. Barbetta, A., Barigelli, E., Dentini, M. (2009). Porous Alginate Hydrogels: Synthetic Methods for Tailoring the Porous Texture. Biomacromolecules, 10, 2328-2337. DOI: https://doi.org/10.1021/bm900517q | |
dc.relation.referencesen | 6. Rezvanian, M., Ahmad, N., Mohd Amin, M. C. I., Ng, S. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. International Journal of Biological Macromolecules, 97, 131-140. DOI: https://doi.org/10.1016/j.ijbiomac.2016.12.079 | |
dc.relation.referencesen | 7. Tummalapalli, M., Berthet, M., Verrier, B., Deopura, B. L., Alam, M. S., Gupta, B. (2016). Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents. International Journal of Biological Macromolecules, 82, 104-113. DOI: https://doi.org/10.1016/j.ijbiomac.2015.10.087 | |
dc.relation.referencesen | 8. Weller, C. D., Team, V., Sussman, G. (2020). First-Line Interactive Wound Dressing Update: A Com- prehensive Review of the Evidence. Frontiers in phar- macology, 11, 155-179. DOI: https://doi.org/10.3389/fphar.2020.00155 | |
dc.relation.referencesen | 9. Lucília P. da Silva, Rui L. Reis, Vitor M. Correlo, Alexandra P. Marques. (2019). Hydrogel-Based Strategies to Advance Therapies for Chronic Skin Wounds. Annual Review of Biomedical Engineering, 21, 145-169. DOI: https://doi.org/10.1146/annurev-bioeng-060418-052422 | |
dc.relation.referencesen | 10. Ehterami, A., Salehi, M., Farzamfar, S., Samadian, H., Vaez, A., Sahrapeyma, H., Ghorbani, S. (2020). A promising wound dressing based on alginate hydrogels containing vitamin D3 cross-linked by calcium carbonate/d-glucono-d-lactone, Biomedical Engineering Letters, 10, 309-319. DOI: https://doi.org/10.1007/s13534-020-00155-8 | |
dc.relation.referencesen | 11. Stoica, A. E., Chircov, C., Grumezescu, A. M. (2020). Hydrogel Dressings for the Treatment of Burn Wounds: An Up-To-Date Overview. Materials, 13, 2853- 2877. DOI: https://doi.org/10.3390/ma13122853 | |
dc.relation.referencesen | 12. Narayanaswamy, R., Torchilin, V. P. (2019). Hydrogels and Their Applications in Targeted Drug Delivery. Molecules, 24 (3), 603-624. DOI: https://doi.org/10.3390/molecules24030603 | |
dc.relation.referencesen | 13. Palii, H. K, Nechytailo, M. Ie., Kovalchuk, V. P. ta in. (2010). Porivnialna kharakterystyka antyseptychnoi aktyvnosti dekametoksynu ta furatsylinu. Zdorovia Ukrainy, 22 (251), 56-57. | |
dc.relation.referencesen | 14. Giordano, S., Peltoniemi, H., Lilius, P., Salmi, A. (2013). Povidone-iodine combined with antibiotic topical irrigation to reduce capsular contracture in cosmetic breast augmentation: a comparative study. Aesthetic Surgery Journal, 33(5), 675-680. DOI: https://doi.org/10.1177/1090820X13491490 | |
dc.relation.referencesen | 15. Bigliardi, P. L., Alsagoff, SAL., El-Kafrawi, H. Y., Pyon, J. K., Wa C. T. C., Villa, M. A. (2017). Povidone iodine in wound healing: A review of current concepts and practices. International Journal of Surgery, 44, 260-268. DOI: https://doi.org/10.1016/j.ijsu.2017.06.073 | |
dc.relation.referencesen | 16. Syhhya, S., Khanna, Dzh. H. (1983). Kolichestvennyiy organicheskiy analiz po funktsionalnyim gruppam. M., Khimiia. | |
dc.relation.referencesen | 17. Dron, I., Stasiuk, A., Bukartyk, M., Luhova, Yu., Samaryk, V. (2020). Formuvannia hidroheliv na osnovi pektynu z riznym stupenem esteryfikatsii. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 3 (1), 239-244. https://doi.org/10.23939/ctas2020.01.239 | |
dc.relation.referencesen | 18. Zhang, K., Feng, W., Jin, C. (2020). Protocol efficiently measuring the swelling rate of hydrogels. Methods X., 7. DOI: https://doi.org/10.1016/j.mex.2019.100779 | |
dc.relation.referencesen | 19. Chukhrii, B. M., Klevets, L. O., Ostapiv, D. D. (1995). Kolorymetrychnyi sposib vyznachennia aktyvnosti suktsynatdehidrohenazy v spermi buhaiv. Visnyk ahrarnoi nauky, 11, 73-76. | |
dc.relation.referencesen | 20. Yapeng Fang, Saphwan Al-Assaf, Glyn, O. Phillips, Katsuyoshi Nishinari, Takahiro Funami, Peter A. Williams. (2008). Binding behavior of calcium to polyu- ronates: Comparison of pectin with alginate. Carbohydrate Polymers, 72, 334-341. DOI: https://doi.org/10.1016/j.carbpol.2007.08.021 | |
dc.relation.referencesen | 21. Peles, Z., Zilberman M. (2012). Novel soy protein wound dressings with controlled antibiotic release: mechanical and physical properties, Acta Biomaterialia, 8(1), 209-217. DOI: https://doi.org/10.1016/j.actbio.2011.08.022 | |
dc.relation.referencesen | 22. Moulay, S. (2013). Molecular iodine-polymer complexes. Journal of Polymer Engineering, 33(5), 389- 443. DOI: https://doi.org/10.1515/polyeng-2012-0122 | |
dc.relation.referencesen | 23. Hansch, C., Fujita, T. (1963) r-s-p Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. Journal of the American Chemical Society, 86, 1616-1626. https://doi.org/10.1021/ja01062a035 | |
dc.relation.uri | https://doi.org/10.3390/biom10081169 | |
dc.relation.uri | https://doi.org/10.3390/ma12203323 | |
dc.relation.uri | https://doi.org/10.1007/s10856-019-6318-7 | |
dc.relation.uri | https://doi.org/10.1016/j.colsurfa.2018.02.015 | |
dc.relation.uri | https://doi.org/10.1021/bm900517q | |
dc.relation.uri | https://doi.org/10.1016/j.ijbiomac.2016.12.079 | |
dc.relation.uri | https://doi.org/10.1016/j.ijbiomac.2015.10.087 | |
dc.relation.uri | https://doi.org/10.3389/fphar.2020.00155 | |
dc.relation.uri | https://doi.org/10.1146/annurev-bioeng-060418-052422 | |
dc.relation.uri | https://doi.org/10.1007/s13534-020-00155-8 | |
dc.relation.uri | https://doi.org/10.3390/ma13122853 | |
dc.relation.uri | https://doi.org/10.3390/molecules24030603 | |
dc.relation.uri | https://doi.org/10.1177/1090820X13491490 | |
dc.relation.uri | https://doi.org/10.1016/j.ijsu.2017.06.073 | |
dc.relation.uri | https://doi.org/10.23939/ctas2020.01.239 | |
dc.relation.uri | https://doi.org/10.1016/j.mex.2019.100779 | |
dc.relation.uri | https://doi.org/10.1016/j.carbpol.2007.08.021 | |
dc.relation.uri | https://doi.org/10.1016/j.actbio.2011.08.022 | |
dc.relation.uri | https://doi.org/10.1515/polyeng-2012-0122 | |
dc.relation.uri | https://doi.org/10.1021/ja01062a035 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | полісахарид | |
dc.subject | гідрогель | |
dc.subject | антисептик | |
dc.subject | пектин | |
dc.subject | альгінат натрію | |
dc.subject | бетадин | |
dc.subject | хлоргексидин | |
dc.subject | polysaccharide | |
dc.subject | hydrogel | |
dc.subject | antiseptic | |
dc.subject | pectin | |
dc.subject | sodium alginate | |
dc.subject | betadine | |
dc.subject | chlorhexidine | |
dc.title | Одержання антисептичних гідрогелевих пластин на основі природних полісахаридів | |
dc.title.alternative | Preparation of antiseptic hydrogel plates based on natural polysaccharides | |
dc.type | Article |
Files
License bundle
1 - 1 of 1