Одержання антисептичних гідрогелевих пластин на основі природних полісахаридів

dc.citation.epage184
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage178
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationІнститут біології тварин НААН
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationInstitute of Animal Biology of NAAS
dc.contributor.authorДронь, І. А.
dc.contributor.authorБукартик, Н. М.
dc.contributor.authorБукартик, М. М.
dc.contributor.authorОстапів, Д. Д.
dc.contributor.authorСамарик, В. Я.
dc.contributor.authorDron, I. A.
dc.contributor.authorBukartyk, M. M.
dc.contributor.authorBukartyk, N. M.
dc.contributor.authorOstapiv, D. D.
dc.contributor.authorSamaryk, V. Ya.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T07:39:13Z
dc.date.created2005-03-01
dc.date.issued2005-03-01
dc.description.abstractІз використанням природних полісахаридів, пектину та альгінату натрію одержано гідрогелеві пластини, здатні до абсорбції ексудату. Проведені дослідження показали відсутність цитотоксичності матеріалу пластин. З метою створення на їх основі бактерицидних лікувальних пов’язок продемонстровано можливість наповнення пластин антисептичними засобами (йодом, бетадином, хлоргексидином) та досліджено динаміку їх вивільнення. Дослідження показали, що вивільнення йоду зі складу пластини є надто швидким і не може задовольнити умову його пролонгованого вивільнення. Встановлено, що бетадин і хлоргексидин вивільняються зі складу пластини пролонговано.
dc.description.abstractUsing natural polysaccharides, pectin and sodium alginate, hydrogel plates capable of absorbing exudate were obtained. Studies have shown no cytotoxicity of the plate material. In order to create bactericidal therapeutic dressings based on them, the possibility of filling the plates with antiseptics (iodine, betadine, chlorhexidine) was shown and their release dynamics was studied. Studies have shown that the release of iodine from the plate is too fast and can not meet the condition of its prolonged release in contrast to betadine and chlorhexidine.
dc.format.extent178-184
dc.format.pages7
dc.identifier.citationОдержання антисептичних гідрогелевих пластин на основі природних полісахаридів / І. А. Дронь, Н. М. Букартик, М. М. Букартик, Д. Д. Остапів, В. Я. Самарик // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 2. — С. 178–184.
dc.identifier.citationenPreparation of antiseptic hydrogel plates based on natural polysaccharides / I. A. Dron, M. M. Bukartyk, N. M. Bukartyk, D. D. Ostapiv, V. Ya. Samaryk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 2. — P. 178–184.
dc.identifier.doidoi.org/10.23939/ctas2022.02.178
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63652
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.references1. Tavakoli, S., Klar, A. S. (2020). Advanced Hydrogels as Wound Dressings. Biomolecules, 10(8), 1169. DOI: https://doi.org/10.3390/biom10081169
dc.relation.references2. Mantha, S., Pillai, S., Khayambashi, P., Upadhyay, A., Zhang, Y., Tao, O. (2019). Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials, 12, 3323-3356. DOI: https://doi.org/10.3390/ma12203323
dc.relation.references3. Catoira, M., Fusaro, L., Di Francesco, D., Ramella, M. (2019). Overview of natural hydrogels for regenerative medicine applications. Journal of Materials Science Materials in Medicine, 30, 105-115. DOI: https://doi.org/10.1007/s10856-019-6318-7
dc.relation.references4. Samchenko, Y., Korotych, O., Kernosenko, L., Poltoratska, T., Pasmurtseva, N. (2018). Stimuli-responsive hybrid porous polymers based on acetals of polyvinyl alcohol and acrylic hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 544, 91-104. DOI: https://doi.org/10.1016/j.colsurfa.2018.02.015
dc.relation.references5. Barbetta, A., Barigelli, E., Dentini, M. (2009). Porous Alginate Hydrogels: Synthetic Methods for Tailoring the Porous Texture. Biomacromolecules, 10, 2328-2337. DOI: https://doi.org/10.1021/bm900517q
dc.relation.references6. Rezvanian, M., Ahmad, N., Mohd Amin, M. C. I., Ng, S. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. International Journal of Biological Macromolecules, 97, 131-140. DOI: https://doi.org/10.1016/j.ijbiomac.2016.12.079
dc.relation.references7. Tummalapalli, M., Berthet, M., Verrier, B., Deopura, B. L., Alam, M. S., Gupta, B. (2016). Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents. International Journal of Biological Macromolecules, 82, 104-113. DOI: https://doi.org/10.1016/j.ijbiomac.2015.10.087
dc.relation.references8. Weller, C. D., Team, V., Sussman, G. (2020). First-Line Interactive Wound Dressing Update: A Com- prehensive Review of the Evidence. Frontiers in phar- macology, 11, 155-179. DOI: https://doi.org/10.3389/fphar.2020.00155
dc.relation.references9. Lucília P. da Silva, Rui L. Reis, Vitor M. Correlo, Alexandra P. Marques. (2019). Hydrogel-Based Strategies to Advance Therapies for Chronic Skin Wounds. Annual Review of Biomedical Engineering, 21, 145-169. DOI: https://doi.org/10.1146/annurev-bioeng-060418-052422
dc.relation.references10. Ehterami, A., Salehi, M., Farzamfar, S., Samadian, H., Vaez, A., Sahrapeyma, H., Ghorbani, S. (2020). A promising wound dressing based on alginate hydrogels containing vitamin D3 cross-linked by calcium carbonate/d-glucono-δ-lactone, Biomedical Engineering Letters, 10, 309-319. DOI: https://doi.org/10.1007/s13534-020-00155-8
dc.relation.references11. Stoica, A. E., Chircov, C., Grumezescu, A. M. (2020). Hydrogel Dressings for the Treatment of Burn Wounds: An Up-To-Date Overview. Materials, 13, 2853- 2877. DOI: https://doi.org/10.3390/ma13122853
dc.relation.references12. Narayanaswamy, R., Torchilin, V. P. (2019). Hydrogels and Their Applications in Targeted Drug Delivery. Molecules, 24 (3), 603-624. DOI: https://doi.org/10.3390/molecules24030603
dc.relation.references13. Palii, H. K, Nechytailo, M. Ie., Kovalchuk, V. P. ta in. (2010). Porivnialna kharakterystyka antyseptychnoi aktyvnosti dekametoksynu ta furatsylinu. Zdorovia Ukrainy, 22 (251), 56-57.
dc.relation.references14. Giordano, S., Peltoniemi, H., Lilius, P., Salmi, A. (2013). Povidone-iodine combined with antibiotic topical irrigation to reduce capsular contracture in cosmetic breast augmentation: a comparative study. Aesthetic Surgery Journal, 33(5), 675-680. DOI: https://doi.org/10.1177/1090820X13491490
dc.relation.references15. Bigliardi, P. L., Alsagoff, SAL., El-Kafrawi, H. Y., Pyon, J. K., Wa C. T. C., Villa, M. A. (2017). Povidone iodine in wound healing: A review of current concepts and practices. International Journal of Surgery, 44, 260-268. DOI: https://doi.org/10.1016/j.ijsu.2017.06.073
dc.relation.references16. Syhhya, S., Khanna, Dzh. H. (1983). Kolichestvennyiy organicheskiy analiz po funktsionalnyim gruppam. M.: Khimiia.
dc.relation.references17. Dron, I., Stasiuk, A., Bukartyk, M., Luhova, Yu., Samaryk, V. (2020). Formuvannia hidroheliv na osnovi pektynu z riznym stupenem esteryfikatsii. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 3 (1), 239-244. https://doi.org/10.23939/ctas2020.01.239
dc.relation.references18. Zhang, K., Feng, W., Jin, C. (2020). Protocol efficiently measuring the swelling rate of hydrogels. Methods X., 7. DOI: https://doi.org/10.1016/j.mex.2019.100779
dc.relation.references19. Chukhrii, B. M., Klevets, L. O., Ostapiv, D. D. (1995). Kolorymetrychnyi sposib vyznachennia aktyvnosti suktsynatdehidrohenazy v spermi buhaiv. Visnyk ahrarnoi nauky, 11, 73-76.
dc.relation.references20. Yapeng Fang, Saphwan Al-Assaf, Glyn, O. Phillips, Katsuyoshi Nishinari, Takahiro Funami, Peter A. Williams. (2008). Binding behavior of calcium to polyu- ronates: Comparison of pectin with alginate. Carbohydrate Polymers, 72, 334-341. DOI: https://doi.org/10.1016/j.carbpol.2007.08.021
dc.relation.references21. Peles, Z., Zilberman M. (2012). Novel soy protein wound dressings with controlled antibiotic release: mechanical and physical properties, Acta Biomaterіalia, 8(1), 209-217. DOI: https://doi.org/10.1016/j.actbio.2011.08.022
dc.relation.references22. Moulay, S. (2013). Molecular iodine-polymer complexes. Journal of Polymer Engineering, 33(5), 389- 443. DOI: https://doi.org/10.1515/polyeng-2012-0122
dc.relation.references23. Hansch, C., Fujita, T. (1963) ρ-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. Journal of the American Chemical Society, 86, 1616-1626. https://doi.org/10.1021/ja01062a035
dc.relation.referencesen1. Tavakoli, S., Klar, A. S. (2020). Advanced Hydrogels as Wound Dressings. Biomolecules, 10(8), 1169. DOI: https://doi.org/10.3390/biom10081169
dc.relation.referencesen2. Mantha, S., Pillai, S., Khayambashi, P., Upadhyay, A., Zhang, Y., Tao, O. (2019). Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials, 12, 3323-3356. DOI: https://doi.org/10.3390/ma12203323
dc.relation.referencesen3. Catoira, M., Fusaro, L., Di Francesco, D., Ramella, M. (2019). Overview of natural hydrogels for regenerative medicine applications. Journal of Materials Science Materials in Medicine, 30, 105-115. DOI: https://doi.org/10.1007/s10856-019-6318-7
dc.relation.referencesen4. Samchenko, Y., Korotych, O., Kernosenko, L., Poltoratska, T., Pasmurtseva, N. (2018). Stimuli-responsive hybrid porous polymers based on acetals of polyvinyl alcohol and acrylic hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 544, 91-104. DOI: https://doi.org/10.1016/j.colsurfa.2018.02.015
dc.relation.referencesen5. Barbetta, A., Barigelli, E., Dentini, M. (2009). Porous Alginate Hydrogels: Synthetic Methods for Tailoring the Porous Texture. Biomacromolecules, 10, 2328-2337. DOI: https://doi.org/10.1021/bm900517q
dc.relation.referencesen6. Rezvanian, M., Ahmad, N., Mohd Amin, M. C. I., Ng, S. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. International Journal of Biological Macromolecules, 97, 131-140. DOI: https://doi.org/10.1016/j.ijbiomac.2016.12.079
dc.relation.referencesen7. Tummalapalli, M., Berthet, M., Verrier, B., Deopura, B. L., Alam, M. S., Gupta, B. (2016). Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents. International Journal of Biological Macromolecules, 82, 104-113. DOI: https://doi.org/10.1016/j.ijbiomac.2015.10.087
dc.relation.referencesen8. Weller, C. D., Team, V., Sussman, G. (2020). First-Line Interactive Wound Dressing Update: A Com- prehensive Review of the Evidence. Frontiers in phar- macology, 11, 155-179. DOI: https://doi.org/10.3389/fphar.2020.00155
dc.relation.referencesen9. Lucília P. da Silva, Rui L. Reis, Vitor M. Correlo, Alexandra P. Marques. (2019). Hydrogel-Based Strategies to Advance Therapies for Chronic Skin Wounds. Annual Review of Biomedical Engineering, 21, 145-169. DOI: https://doi.org/10.1146/annurev-bioeng-060418-052422
dc.relation.referencesen10. Ehterami, A., Salehi, M., Farzamfar, S., Samadian, H., Vaez, A., Sahrapeyma, H., Ghorbani, S. (2020). A promising wound dressing based on alginate hydrogels containing vitamin D3 cross-linked by calcium carbonate/d-glucono-d-lactone, Biomedical Engineering Letters, 10, 309-319. DOI: https://doi.org/10.1007/s13534-020-00155-8
dc.relation.referencesen11. Stoica, A. E., Chircov, C., Grumezescu, A. M. (2020). Hydrogel Dressings for the Treatment of Burn Wounds: An Up-To-Date Overview. Materials, 13, 2853- 2877. DOI: https://doi.org/10.3390/ma13122853
dc.relation.referencesen12. Narayanaswamy, R., Torchilin, V. P. (2019). Hydrogels and Their Applications in Targeted Drug Delivery. Molecules, 24 (3), 603-624. DOI: https://doi.org/10.3390/molecules24030603
dc.relation.referencesen13. Palii, H. K, Nechytailo, M. Ie., Kovalchuk, V. P. ta in. (2010). Porivnialna kharakterystyka antyseptychnoi aktyvnosti dekametoksynu ta furatsylinu. Zdorovia Ukrainy, 22 (251), 56-57.
dc.relation.referencesen14. Giordano, S., Peltoniemi, H., Lilius, P., Salmi, A. (2013). Povidone-iodine combined with antibiotic topical irrigation to reduce capsular contracture in cosmetic breast augmentation: a comparative study. Aesthetic Surgery Journal, 33(5), 675-680. DOI: https://doi.org/10.1177/1090820X13491490
dc.relation.referencesen15. Bigliardi, P. L., Alsagoff, SAL., El-Kafrawi, H. Y., Pyon, J. K., Wa C. T. C., Villa, M. A. (2017). Povidone iodine in wound healing: A review of current concepts and practices. International Journal of Surgery, 44, 260-268. DOI: https://doi.org/10.1016/j.ijsu.2017.06.073
dc.relation.referencesen16. Syhhya, S., Khanna, Dzh. H. (1983). Kolichestvennyiy organicheskiy analiz po funktsionalnyim gruppam. M., Khimiia.
dc.relation.referencesen17. Dron, I., Stasiuk, A., Bukartyk, M., Luhova, Yu., Samaryk, V. (2020). Formuvannia hidroheliv na osnovi pektynu z riznym stupenem esteryfikatsii. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 3 (1), 239-244. https://doi.org/10.23939/ctas2020.01.239
dc.relation.referencesen18. Zhang, K., Feng, W., Jin, C. (2020). Protocol efficiently measuring the swelling rate of hydrogels. Methods X., 7. DOI: https://doi.org/10.1016/j.mex.2019.100779
dc.relation.referencesen19. Chukhrii, B. M., Klevets, L. O., Ostapiv, D. D. (1995). Kolorymetrychnyi sposib vyznachennia aktyvnosti suktsynatdehidrohenazy v spermi buhaiv. Visnyk ahrarnoi nauky, 11, 73-76.
dc.relation.referencesen20. Yapeng Fang, Saphwan Al-Assaf, Glyn, O. Phillips, Katsuyoshi Nishinari, Takahiro Funami, Peter A. Williams. (2008). Binding behavior of calcium to polyu- ronates: Comparison of pectin with alginate. Carbohydrate Polymers, 72, 334-341. DOI: https://doi.org/10.1016/j.carbpol.2007.08.021
dc.relation.referencesen21. Peles, Z., Zilberman M. (2012). Novel soy protein wound dressings with controlled antibiotic release: mechanical and physical properties, Acta Biomaterialia, 8(1), 209-217. DOI: https://doi.org/10.1016/j.actbio.2011.08.022
dc.relation.referencesen22. Moulay, S. (2013). Molecular iodine-polymer complexes. Journal of Polymer Engineering, 33(5), 389- 443. DOI: https://doi.org/10.1515/polyeng-2012-0122
dc.relation.referencesen23. Hansch, C., Fujita, T. (1963) r-s-p Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. Journal of the American Chemical Society, 86, 1616-1626. https://doi.org/10.1021/ja01062a035
dc.relation.urihttps://doi.org/10.3390/biom10081169
dc.relation.urihttps://doi.org/10.3390/ma12203323
dc.relation.urihttps://doi.org/10.1007/s10856-019-6318-7
dc.relation.urihttps://doi.org/10.1016/j.colsurfa.2018.02.015
dc.relation.urihttps://doi.org/10.1021/bm900517q
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2016.12.079
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2015.10.087
dc.relation.urihttps://doi.org/10.3389/fphar.2020.00155
dc.relation.urihttps://doi.org/10.1146/annurev-bioeng-060418-052422
dc.relation.urihttps://doi.org/10.1007/s13534-020-00155-8
dc.relation.urihttps://doi.org/10.3390/ma13122853
dc.relation.urihttps://doi.org/10.3390/molecules24030603
dc.relation.urihttps://doi.org/10.1177/1090820X13491490
dc.relation.urihttps://doi.org/10.1016/j.ijsu.2017.06.073
dc.relation.urihttps://doi.org/10.23939/ctas2020.01.239
dc.relation.urihttps://doi.org/10.1016/j.mex.2019.100779
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2007.08.021
dc.relation.urihttps://doi.org/10.1016/j.actbio.2011.08.022
dc.relation.urihttps://doi.org/10.1515/polyeng-2012-0122
dc.relation.urihttps://doi.org/10.1021/ja01062a035
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectполісахарид
dc.subjectгідрогель
dc.subjectантисептик
dc.subjectпектин
dc.subjectальгінат натрію
dc.subjectбетадин
dc.subjectхлоргексидин
dc.subjectpolysaccharide
dc.subjecthydrogel
dc.subjectantiseptic
dc.subjectpectin
dc.subjectsodium alginate
dc.subjectbetadine
dc.subjectchlorhexidine
dc.titleОдержання антисептичних гідрогелевих пластин на основі природних полісахаридів
dc.title.alternativePreparation of antiseptic hydrogel plates based on natural polysaccharides
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v5n2_Dron_I_A-Preparation_of_antiseptic_178-184.pdf
Size:
745.42 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v5n2_Dron_I_A-Preparation_of_antiseptic_178-184__COVER.png
Size:
455.34 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: