High-Fidelity RANS CFD Simulations of Physico-Chemical Process of Combustion in Gas Turbine Combustion Chambers in ANSYS CFX

dc.citation.epage95
dc.citation.issue2
dc.citation.journalTitleЕнергетика та системи керування
dc.citation.spage81
dc.citation.volume10
dc.contributor.affiliationНаціональний аерокосмічний університет ім. М. Є. Жуковського “Харківський авіаційний інститут”
dc.contributor.affiliationNational Aerospace University “Kharkiv Aviation Institute”
dc.contributor.authorХаджіванд, Масуд
dc.contributor.authorHajivand, Masoud
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-10-20T09:16:15Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractУ цьому дослідженні розглянуто валідацію і точність основних параметрів, зокрема розподіл температури і викиди оксидів азоту (NOx) на виході із камери згоряння газової турбіни за допомогою високоточного CFD моделювання методом Нав’є – Стокса, усередненого за Рейнольдсом (RANS). Згоряння пропану (C3H8) – повітря змодельовано в ANSYS CFX із використанням трьох різних моделей турбулентності, ураховуючи стандартну k–ε, RNG k–ε і перенесення напруги зсуву (SST), а також різних моделей горіння, таких як модель вихрового розсіювання (EDM), гібрид вихрового розсіювання і хімії кінцевих швидкостей (EDM / FRC), а також модель полум’я, зокрема модель випромінювання P-1. Виконано ретельний аналіз чутливості із використанням дрібних, середніх і грубих неструктурованих розрахункових сіток для підвищення надійності й точності результатів. Результати моделювання показали, що для температури на виході стандартна модель турбулентності k–ε у поєднанні з моделлю горіння Flamelet дає середнє відхилення –6,8 %, тоді як k–ε в поєднанні з EDM – середнє відхилення –9,9 %. Найменше відхилення викидів NOх на виході із камери згоряння (2,3 %) отримано із застосуванням моделі згоряння EDM / FRC у поєднанні з моделлю SST. Водночас та сама модель згоряння в поєднанні зі стандартною k–ε та RNG k–ε моделями продемонструвала більше середнє відхилення 13,6 % та 15,4 %, відповідно, під час прогнозування викидів NOх.
dc.description.abstractThis study examines the validation and precision of essential parameters, including temperature distribution and nitrogen oxide (NOx) emissions, at the outlet of a gas turbine combustion chamber through high-fidelity Reynolds-Averaged Navier – Stokes (RANS) CFD simulations. The propane(C3H8)-air combustion process is modeled in ANSYS CFX utilizing three various turbulence models, including standard k–ε, RNG k–ε, and shear stress transport (SST), beside various combustion models such as the Eddy Dissipation Model (EDM), a hybrid of Eddy Dissipation and Finite Rate Chemistry (EDM / FRC), and the Flamelet model, including the P-1 model of radiation. A thorough sensitivity analysis was performed utilizing fine, medium, and coarse unstructured computational meshes to improve the reliability and accuracy of the results. The obtained CFD results showed that for outlet temperature, the standard k–ε turbulence model coupled with the Flamelet combustion model yields a mean deviation of –6.8 %, while k–ε coupled with EDM yields a mean deviation of –9.9 %. It also gave the lowest deviation of NOx emissions at combustor outlet equal to 2.3 % when EDM/FRC combustion model was used in tandem with SST turbulence model. While the same combustion model coupled with the standard k–ε and RNG k–ε turbulence models exhibited a higher mean deviation of 13.6 % and 15.4 %, respectively, in predicting NOx emissions.
dc.format.extent81-95
dc.format.pages15
dc.identifier.citationHajivand M. High-Fidelity RANS CFD Simulations of Physico-Chemical Process of Combustion in Gas Turbine Combustion Chambers in ANSYS CFX / Masoud Hajivand // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 2. — P. 81–95.
dc.identifier.citationenHajivand M. High-Fidelity RANS CFD Simulations of Physico-Chemical Process of Combustion in Gas Turbine Combustion Chambers in ANSYS CFX / Masoud Hajivand // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 2. — P. 81–95.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/113847
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕнергетика та системи керування, 2 (10), 2024
dc.relation.ispartofEnergy Engineering and Control Systems, 2 (10), 2024
dc.relation.references[1] Oberkampf, W. L., & Trucano, T. G. (2002). Verification and validation in computational fluid dynamics. Progress in Aerospace Sciences/Progress in Aerospace Sciences, 38(3), 209–272. https://doi.org/10.1016/S0376-0421(02)00005-2
dc.relation.references[2] Schlesinger, S. (1979) Terminology for Model Credibility. Simulation, 32, 103-104. https://doi.org/10.1177/003754977903200304
dc.relation.references[3] Zhukov, V. P. (2012). Verification, Validation, and Testing of Kinetic Mechanisms of Hydrogen Combustion in Fluid-Dynamic Computations. ISRN Mechanical Engineering, 2012, 1–11. https://doi.org/10.5402/2012/475607
dc.relation.references[4] Bhurat, S., Pandey, S., Chintala, V., Jaiswal, M., & Kurien, C. (2022). Effect of novel fuel vaporiser technology on engine characteristics of partially premixed charge compression ignition (PCCI) engine with toroidal combustion chamber. Fuel, 315, 123197. https://doi.org/10.1016/j.fuel.2022.123197
dc.relation.references[5] Becker, L. G., Kosaka, H., Böhm, B., Doost, S., Knappstein, R., Habermehl, M., Kneer, R., Janicka, J., & Dreizler, A. (2017b). Experimental investigation of flame stabilization inside the quarl of an oxyfuel swirl burner. Fuel, 201, 124–135. https://doi.org/10.1016/j.fuel.2016.09.002
dc.relation.references[6] Aerospace Mechanical and Mechatronic Engineering - The University of Sydney. (n.d.). https://web.aeromech.usyd.edu.au/thermofluids/swirl.php
dc.relation.references[7] Ferziger, J. H., & Perić, M. (2002). Introduction to Numerical Methods. In Springer eBooks (pp. 21–37). https://doi.org/10.1007/978-3-642-56026-2_2
dc.relation.references[8] Eckbreth, A. C. (2022). Laser Diagnostics for Combustion Temperature and Species. https://doi.org/10.1201/9781003077251
dc.relation.references[9] KoHse-HoingHaus, N. (2002). Applied Combustion Diagnostics. In CRC Press eBooks. https://doi.org/10.1201/9781498719414
dc.relation.references[10] Masri, A. R. (2011). Design of Experiments for Gaining Insights and Validating Modeling of Turbulent Combustion. In Fluid mechanics and its applications (pp. 355–380). https://doi.org/10.1007/978-94-007-0412-1_15
dc.relation.references[11] Borghi, R. (1988). Turbulent combustion modelling. Progress in Energy and Combustion Science, 14(4), 245–292. https://doi.org/10.1016/03601285(88)90015-9
dc.relation.references[12] ANSYS, Inc. (2015) ANSYS CFX-Solver Theory Guide, Release 16.2 https://www.ansys.com/
dc.relation.references[13] Serbin, S., Burunsuz, K., Chen, D., & Kowalski, J. (2022). Investigation of the Characteristics of a Low-Emission Gas Turbine Combustion Chamber Operating on a Mixture of Natural Gas and Hydrogen. Polish Maritime Research, 29(2), 64–76. https://doi.org/10.2478/pomr-2022-0018
dc.relation.references[14] Launder, B. E., & Spalding, D. B. (1972). Lectures in mathematical models of turbulence. http://ci.nii.ac.jp/ncid/BA04677540
dc.relation.references[15] Matveev, I. B., Serbin, S. I., Vilkul, V. V., & Goncharova, N. A. (2015). Synthesis Gas Afterburner Based on an Injector Type Plasma-Assisted Combustion System. IEEE Transactions on Plasma Science, 43(12), 3974–3978. https://doi.org/10.1109/TPS.2015.2475125
dc.relation.references[16] Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. https://doi.org/10.2514/3.12149
dc.relation.references[17] Li, Q., Yang, H., Wang, Y., & Wang, P. (2015). Accuracy improvement of the modified EDM model for non-premixed turbulent combustion in gas turbine. Case Studies in Thermal Engineering, 6, 69–76. https://doi.org/10.1016/j.csite.2015.07.002
dc.relation.references[18] Magnussen, B. F., & Hjertager, B. H. (1977b). On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symposium (International) on Combustion, 16(1), 719–729. https://doi.org/10.1016/S0082-0784(77)80366-4
dc.relation.references[19] Gabler, H., Yetter, R., & Glassman, I. (1998). Asymmetric whirl combustion - A new approach for non-premixed low NO(x) gas turbine combustor design. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. https://doi.org/10.2514/6.1998-3530
dc.relation.references[20] Mongia, H. (2008). Recent Progress in Comprehensive Modeling of Gas Turbine Combustion. 46th AIAA Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.2008-1445
dc.relation.references[21] Gobbato, P., Masi, M., Toffolo, A., & Lazzaretto, A. (2011). Numerical simulation of a hydrogen fuelled gas turbine combustor. International Journal of Hydrogen Energy, 36(13), 7993–8002. https://doi.org/10.1016/j.ijhydene.2011.01.045
dc.relation.references[22] Peters, N. (1984). Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 10(3), 319–339. https://doi.org/10.1016/0360-1285(84)90114-x
dc.relation.references[23] Chitgarha, F., & Mardani, A. (2018). Assessment of steady and unsteady flamelet models for MILD combustion modeling. International Journal of Hydrogen Energy, 43(32), 15551–15563. https://doi.org/10.1016/j.ijhydene.2018.06.071
dc.relation.references[24] Gamil, A. A., Nikolaidis, T., Lelaj, I., & Laskaridis, P. (2020). Assessment of numerical radiation models on the heat transfer of an aero-engine combustion chamber. Case Studies in Thermal Engineering, 22, 100772. https://doi.org/10.1016/j.csite.2020.100772
dc.relation.references[25] Jiang, B., Liang, H., Huang, G., & Li, X. (2006). Study on NOx Formation in CH4/Air Jet Combustion. Chinese Journal of Chemical Engineering, 14(6), 723–728. https://doi.org/10.1016/S1004-9541(07)60002-0
dc.relation.references[26] Gamil, A. A., Nikolaidis, T., Lelaj, I., & Laskaridis, P. (2020). Assessment of numerical radiation models on the heat transfer of an aero-engine combustion chamber. Case Studies in Thermal Engineering, 22, 100772. https://doi.org/10.1016/j.csite.2020.100772
dc.relation.references[27] Jones, W. P., & Toral, H. (1983). Temperature and Composition Measurements in a Research Gas Turbine Combustion Chamber. Combustion Science and Technology, 31(5–6), 249–275. https://doi.org/10.1080/00102208308923645
dc.relation.references[28] Bicen, A. F., & Jones, W. P. (1986). Velocity Characteristics of Isothermal and Combusting Flows in a Model Combustor. Combustion Science and Technology, 49(1–2), 1–15. https://doi.org/10.1080/00102208608923900
dc.relation.references[29] Heitor, M., & Whitelaw, J. (1986). Velocity, temperature, and species characteristics of the flow in a gas-turbine combustor. Combustion and Flame, 64(1), 1–32. https://doi.org/10.1016/0010-2180(86)90095-7
dc.relation.references[30] Mohammadpour, M., Houshfar, E., & Ashjaee, M. (2023). Combustion behavior study and flame zone analysis of biogas-fueled gas turbine combustor under O2/CO2 and O2/H2O oxidizing modes. Fuel, 345, 128173. https://doi.org/10.1016/j.fuel.2023.128173
dc.relation.references[31] Wang, J., Hu, Z., Du, C., Tian, L., & Baleta, J. (2021). Numerical study of effusion cooling of a gas turbine combustor liner. Fuel, 294, 120578. https://doi.org/10.1016/j.fuel.2021.120578
dc.relation.referencesen[1] Oberkampf, W. L., & Trucano, T. G. (2002). Verification and validation in computational fluid dynamics. Progress in Aerospace Sciences/Progress in Aerospace Sciences, 38(3), 209–272. https://doi.org/10.1016/S0376-0421(02)00005-2
dc.relation.referencesen[2] Schlesinger, S. (1979) Terminology for Model Credibility. Simulation, 32, 103-104. https://doi.org/10.1177/003754977903200304
dc.relation.referencesen[3] Zhukov, V. P. (2012). Verification, Validation, and Testing of Kinetic Mechanisms of Hydrogen Combustion in Fluid-Dynamic Computations. ISRN Mechanical Engineering, 2012, 1–11. https://doi.org/10.5402/2012/475607
dc.relation.referencesen[4] Bhurat, S., Pandey, S., Chintala, V., Jaiswal, M., & Kurien, C. (2022). Effect of novel fuel vaporiser technology on engine characteristics of partially premixed charge compression ignition (PCCI) engine with toroidal combustion chamber. Fuel, 315, 123197. https://doi.org/10.1016/j.fuel.2022.123197
dc.relation.referencesen[5] Becker, L. G., Kosaka, H., Böhm, B., Doost, S., Knappstein, R., Habermehl, M., Kneer, R., Janicka, J., & Dreizler, A. (2017b). Experimental investigation of flame stabilization inside the quarl of an oxyfuel swirl burner. Fuel, 201, 124–135. https://doi.org/10.1016/j.fuel.2016.09.002
dc.relation.referencesen[6] Aerospace Mechanical and Mechatronic Engineering - The University of Sydney. (n.d.). https://web.aeromech.usyd.edu.au/thermofluids/swirl.php
dc.relation.referencesen[7] Ferziger, J. H., & Perić, M. (2002). Introduction to Numerical Methods. In Springer eBooks (pp. 21–37). https://doi.org/10.1007/978-3-642-56026-2_2
dc.relation.referencesen[8] Eckbreth, A. C. (2022). Laser Diagnostics for Combustion Temperature and Species. https://doi.org/10.1201/9781003077251
dc.relation.referencesen[9] KoHse-HoingHaus, N. (2002). Applied Combustion Diagnostics. In CRC Press eBooks. https://doi.org/10.1201/9781498719414
dc.relation.referencesen[10] Masri, A. R. (2011). Design of Experiments for Gaining Insights and Validating Modeling of Turbulent Combustion. In Fluid mechanics and its applications (pp. 355–380). https://doi.org/10.1007/978-94-007-0412-1_15
dc.relation.referencesen[11] Borghi, R. (1988). Turbulent combustion modelling. Progress in Energy and Combustion Science, 14(4), 245–292. https://doi.org/10.1016/03601285(88)90015-9
dc.relation.referencesen[12] ANSYS, Inc. (2015) ANSYS CFX-Solver Theory Guide, Release 16.2 https://www.ansys.com/
dc.relation.referencesen[13] Serbin, S., Burunsuz, K., Chen, D., & Kowalski, J. (2022). Investigation of the Characteristics of a Low-Emission Gas Turbine Combustion Chamber Operating on a Mixture of Natural Gas and Hydrogen. Polish Maritime Research, 29(2), 64–76. https://doi.org/10.2478/pomr-2022-0018
dc.relation.referencesen[14] Launder, B. E., & Spalding, D. B. (1972). Lectures in mathematical models of turbulence. http://ci.nii.ac.jp/ncid/BA04677540
dc.relation.referencesen[15] Matveev, I. B., Serbin, S. I., Vilkul, V. V., & Goncharova, N. A. (2015). Synthesis Gas Afterburner Based on an Injector Type Plasma-Assisted Combustion System. IEEE Transactions on Plasma Science, 43(12), 3974–3978. https://doi.org/10.1109/TPS.2015.2475125
dc.relation.referencesen[16] Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. https://doi.org/10.2514/3.12149
dc.relation.referencesen[17] Li, Q., Yang, H., Wang, Y., & Wang, P. (2015). Accuracy improvement of the modified EDM model for non-premixed turbulent combustion in gas turbine. Case Studies in Thermal Engineering, 6, 69–76. https://doi.org/10.1016/j.csite.2015.07.002
dc.relation.referencesen[18] Magnussen, B. F., & Hjertager, B. H. (1977b). On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symposium (International) on Combustion, 16(1), 719–729. https://doi.org/10.1016/S0082-0784(77)80366-4
dc.relation.referencesen[19] Gabler, H., Yetter, R., & Glassman, I. (1998). Asymmetric whirl combustion - A new approach for non-premixed low NO(x) gas turbine combustor design. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. https://doi.org/10.2514/6.1998-3530
dc.relation.referencesen[20] Mongia, H. (2008). Recent Progress in Comprehensive Modeling of Gas Turbine Combustion. 46th AIAA Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.2008-1445
dc.relation.referencesen[21] Gobbato, P., Masi, M., Toffolo, A., & Lazzaretto, A. (2011). Numerical simulation of a hydrogen fuelled gas turbine combustor. International Journal of Hydrogen Energy, 36(13), 7993–8002. https://doi.org/10.1016/j.ijhydene.2011.01.045
dc.relation.referencesen[22] Peters, N. (1984). Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 10(3), 319–339. https://doi.org/10.1016/0360-1285(84)90114-x
dc.relation.referencesen[23] Chitgarha, F., & Mardani, A. (2018). Assessment of steady and unsteady flamelet models for MILD combustion modeling. International Journal of Hydrogen Energy, 43(32), 15551–15563. https://doi.org/10.1016/j.ijhydene.2018.06.071
dc.relation.referencesen[24] Gamil, A. A., Nikolaidis, T., Lelaj, I., & Laskaridis, P. (2020). Assessment of numerical radiation models on the heat transfer of an aero-engine combustion chamber. Case Studies in Thermal Engineering, 22, 100772. https://doi.org/10.1016/j.csite.2020.100772
dc.relation.referencesen[25] Jiang, B., Liang, H., Huang, G., & Li, X. (2006). Study on NOx Formation in CH4/Air Jet Combustion. Chinese Journal of Chemical Engineering, 14(6), 723–728. https://doi.org/10.1016/S1004-9541(07)60002-0
dc.relation.referencesen[26] Gamil, A. A., Nikolaidis, T., Lelaj, I., & Laskaridis, P. (2020). Assessment of numerical radiation models on the heat transfer of an aero-engine combustion chamber. Case Studies in Thermal Engineering, 22, 100772. https://doi.org/10.1016/j.csite.2020.100772
dc.relation.referencesen[27] Jones, W. P., & Toral, H. (1983). Temperature and Composition Measurements in a Research Gas Turbine Combustion Chamber. Combustion Science and Technology, 31(5–6), 249–275. https://doi.org/10.1080/00102208308923645
dc.relation.referencesen[28] Bicen, A. F., & Jones, W. P. (1986). Velocity Characteristics of Isothermal and Combusting Flows in a Model Combustor. Combustion Science and Technology, 49(1–2), 1–15. https://doi.org/10.1080/00102208608923900
dc.relation.referencesen[29] Heitor, M., & Whitelaw, J. (1986). Velocity, temperature, and species characteristics of the flow in a gas-turbine combustor. Combustion and Flame, 64(1), 1–32. https://doi.org/10.1016/0010-2180(86)90095-7
dc.relation.referencesen[30] Mohammadpour, M., Houshfar, E., & Ashjaee, M. (2023). Combustion behavior study and flame zone analysis of biogas-fueled gas turbine combustor under O2/CO2 and O2/H2O oxidizing modes. Fuel, 345, 128173. https://doi.org/10.1016/j.fuel.2023.128173
dc.relation.referencesen[31] Wang, J., Hu, Z., Du, C., Tian, L., & Baleta, J. (2021). Numerical study of effusion cooling of a gas turbine combustor liner. Fuel, 294, 120578. https://doi.org/10.1016/j.fuel.2021.120578
dc.relation.urihttps://doi.org/10.1016/S0376-0421(02)00005-2
dc.relation.urihttps://doi.org/10.1177/003754977903200304
dc.relation.urihttps://doi.org/10.5402/2012/475607
dc.relation.urihttps://doi.org/10.1016/j.fuel.2022.123197
dc.relation.urihttps://doi.org/10.1016/j.fuel.2016.09.002
dc.relation.urihttps://web.aeromech.usyd.edu.au/thermofluids/swirl.php
dc.relation.urihttps://doi.org/10.1007/978-3-642-56026-2_2
dc.relation.urihttps://doi.org/10.1201/9781003077251
dc.relation.urihttps://doi.org/10.1201/9781498719414
dc.relation.urihttps://doi.org/10.1007/978-94-007-0412-1_15
dc.relation.urihttps://doi.org/10.1016/03601285(88)90015-9
dc.relation.urihttps://www.ansys.com/
dc.relation.urihttps://doi.org/10.2478/pomr-2022-0018
dc.relation.urihttp://ci.nii.ac.jp/ncid/BA04677540
dc.relation.urihttps://doi.org/10.1109/TPS.2015.2475125
dc.relation.urihttps://doi.org/10.2514/3.12149
dc.relation.urihttps://doi.org/10.1016/j.csite.2015.07.002
dc.relation.urihttps://doi.org/10.1016/S0082-0784(77)80366-4
dc.relation.urihttps://doi.org/10.2514/6.1998-3530
dc.relation.urihttps://doi.org/10.2514/6.2008-1445
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2011.01.045
dc.relation.urihttps://doi.org/10.1016/0360-1285(84)90114-x
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2018.06.071
dc.relation.urihttps://doi.org/10.1016/j.csite.2020.100772
dc.relation.urihttps://doi.org/10.1016/S1004-9541(07)60002-0
dc.relation.urihttps://doi.org/10.1080/00102208308923645
dc.relation.urihttps://doi.org/10.1080/00102208608923900
dc.relation.urihttps://doi.org/10.1016/0010-2180(86)90095-7
dc.relation.urihttps://doi.org/10.1016/j.fuel.2023.128173
dc.relation.urihttps://doi.org/10.1016/j.fuel.2021.120578
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectгоріння
dc.subjectемісія
dc.subjectобчислювальна гідрогазодинаміка
dc.subjectтурбулентність
dc.subjectмодель Flamelet
dc.subjectвалідація
dc.subjectвихрове розсіювання
dc.subjectcombustion
dc.subjectemission
dc.subjectCFD
dc.subjectturbulence
dc.subjectFlamelet model
dc.subjectvalidation
dc.subjecteddy dissipation
dc.titleHigh-Fidelity RANS CFD Simulations of Physico-Chemical Process of Combustion in Gas Turbine Combustion Chambers in ANSYS CFX
dc.title.alternativeВисокоточне RANS CFD моделювання фізико-хімічних процесів горіння в камерах згоряння газових турбін в ANSYS CFX
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v10n2_Hajivand_M-High_Fidelity_RANS_CFD_Simulations_81-95.pdf
Size:
4.28 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v10n2_Hajivand_M-High_Fidelity_RANS_CFD_Simulations_81-95__COVER.png
Size:
481.46 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: