Extraction of semantic relations from Wikipedia text corpus

dc.citation.epage75
dc.citation.journalTitleComputational Linguistics and Intelligent Systems
dc.citation.spage74
dc.citation.volume2 : Proceedings of the 3nd International conference, COLINS 2019. Workshop, Kharkiv, Ukraine, April 18-19, 2019
dc.contributor.affiliationNational Technical University "Kharkiv Polytechnic Institute"
dc.contributor.authorShanidze, Olexandr
dc.contributor.authorPetrasova, Svitlana
dc.coverage.placenameLviv
dc.date.accessioned2019-10-31T13:21:03Z
dc.date.available2019-10-31T13:21:03Z
dc.date.created2019-04-18
dc.date.issued2019-04-18
dc.description.abstractThis paper proposes the algorithm for automatic extraction of semantic relations using the rule-based approach. The authors suggest identifying certain verbs (predicates) between a subject and an object of expressions to obtain a sequence of semantic relations in the designed text corpus of Wikipedia articles. The synsets from WordNet are applied to extract semantic relations between concepts and their synonyms from the text corpus.
dc.format.extent74-75
dc.format.pages2
dc.identifier.citationShanidze O. Extraction of semantic relations from Wikipedia text corpus / Olexandr Shanidze, Svitlana Petrasova // Computational Linguistics and Intelligent Systems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2 : Proceedings of the 3nd International conference, COLINS 2019. Workshop, Kharkiv, Ukraine, April 18-19, 2019. — P. 74–75. — (Student section).
dc.identifier.citationenShanidze O. Extraction of semantic relations from Wikipedia text corpus / Olexandr Shanidze, Svitlana Petrasova // Computational Linguistics and Intelligent Systems. — Lviv Politechnic Publishing House, 2019. — Vol 2 : Proceedings of the 3nd International conference, COLINS 2019. Workshop, Kharkiv, Ukraine, April 18-19, 2019. — P. 74–75. — (Student section).
dc.identifier.issn2523-4013
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45488
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofComputational Linguistics and Intelligent Systems (2), 2019
dc.relation.referencesen1. Petrasova, S.V., Khairova, N.F.: Automated semantic network construction based on the glossary. In: Horizons of Applied Linguistics and Linguistic Technologies: International Scientific Conference Megaling–2013,http://megaling.ulif.org.ua/tezi-2013-rik/, last accessed 2019/02/07.
dc.relation.referencesen2. Bolshakova, Ye.I., Vorontsov, K.V., Yefremova, N.E.: Automatic natural language texts processing and data analysis. Moscow, Higher School of Economics National Research University, 269 (2017)
dc.relation.referencesen3. Wikipedia. Information Technologies Category,https://en.wikipedia.org/ wiki/Category:Information_technology, last accessed 2019/02/07.
dc.relation.referencesen4. WordNet,https://wordnet.princeton.edu, last accessed 2019/02/07.
dc.relation.urihttp://megaling.ulif.org.ua/tezi-2013-rik/
dc.relation.urihttps://en.wikipedia.org/
dc.relation.urihttps://wordnet.princeton.edu
dc.rights.holder© 2019 for the individual papers by the papers’ authors. Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.
dc.subjectsemantic relations
dc.subjectrule-based approach
dc.subjectWikipedia
dc.subjecttext corpus
dc.subjectsynsets
dc.subjectWordNet
dc.titleExtraction of semantic relations from Wikipedia text corpus
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019v2___Proceedings_of_the_3nd_International_conference_COLINS_2019_Workshop_Kharkiv_Ukraine_April_18-19_2019_Shanidze_O-Extraction_of_semantic_relations_74-75.pdf
Size:
302.59 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019v2___Proceedings_of_the_3nd_International_conference_COLINS_2019_Workshop_Kharkiv_Ukraine_April_18-19_2019_Shanidze_O-Extraction_of_semantic_relations_74-75__COVER.png
Size:
276.13 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.97 KB
Format:
Plain Text
Description: