Performance analysis of CNN-enhanced genetic algorithm for topological optimization in metamaterial design

dc.citation.epage8
dc.citation.issue3
dc.citation.journalTitleКомп’ютерні системи проектування. Теорія і практика
dc.citation.spage1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМуляк, Назарій
dc.contributor.authorЗдобицький, Андрій
dc.contributor.authorЛукашевич, Анджей
dc.contributor.authorMuliak, Nazarii
dc.contributor.authorZdobytskyi, Andriy
dc.contributor.authorLukaszewicz, Andrzej
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-12-16T08:40:46Z
dc.description.abstractПоєднання згорткових нейронних мереж (CNN) та генетичних алгоритмів (GA), створює перспективний підхід для топологічної оптимізації складних ґратчастих структур. Ґратчасті структури використовують як основу для комплексних метаматеріалів. Розглянуто здатність методу генерувати оптимальні ґратчасті структури із мінімальним використанням матеріалу. Згорткову нейронну мережу використано як інструмент аналізу, що може оцінювати та прогнозувати ключові параметри згенерованих ґратчастих структур. Основна мета алгоритму – генерація широкого спектра конфігурацій, що згодом нейронна мережа використає як навчальні дані. Ключові показники продуктивності охоплюють стійкість до навантаження, відношення міцності згенерованого матеріалу до його ваги, час, необхідний для генерації ґратчастих структур, та точність генерації. Ці показники застосовуються як інструменти для оцінювання продуктивності методу в заданих умовах навколишнього середовища. Метод CNN-GA може створювати високоефективні, легкі структури із високою продуктивністю та збереженням матеріалу. Відповідні засоби випадкової генерації, наявні в гене- тичному алгоритмі, здатні виявляти унікальні конфігурації ґратчастих решіток та пропонувати варіанти, які можуть проігнорувати стандартні методи оптимізації. Проте ефективність методу обмежується наявними ресурсами і можливостями обчислювальної системи. Крім того, точність системи прогнозування обмежується засобами випадкової генерації. Наведений аналіз висвітлює переваги методу, потенційні обмеження та практичні аспекти використання, а також закладає основу для майбутніх досліджень, спрямованих на удосконалення методів топологічної оптимізації метаматеріалів.
dc.description.abstractThe Combination of Convolutional Neural Networks (CNN) and Genetic Algorithms (GA) provides a promising approach for topological optimization of complex lattice structures. Lattice structures are commonly used as base in the design of high-performance metamaterials. This paper presents a review of the effectiveness and efficiency of the CNN-GA method. We will examine the ability of the method to generate optimal complex structures while minimizing material usage. CNN is utilized mainly as an analysis instrument. That can evaluate and predict key structural properties of generated lattice structures. The key purpose of the GA algorithm is to provide diverse design configurations that will be later identified as optimal structures by CNN. Key performance metrics include load-bearing capacity, strength-to-weight ratio, computational time, and scalability. These key points can be utilized as tools that will evaluate the method`s performance for a real-world application. The CNN-GA method can produce highly efficient, lightweight structures with high performance and material economy compared to traditional optimization techniques. Moreover, genetic algorithm random exploration techniques can reveal unique lattice configurations and provide an option that might be overlooked by a standard deterministic method. However, the method's effectiveness is partially constrained by its operations, which may consume a lot of computational resources and time for a significant result. Additionally, the accuracy of this method's prediction system is compromised by the inherent nature of the GA generation process. This analysis highlights the method`s strengths, potential limitations, and practical implications and provides a foundation for future research aimed at refining machine learning-based topological optimization methods.
dc.format.extent1-8
dc.format.pages8
dc.identifier.citationMuliak N. Performance analysis of CNN-enhanced genetic algorithm for topological optimization in metamaterial design / Nazarii Muliak, Andriy Zdobytskyi, Andrzej Lukaszewicz // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 3. — P. 1–8.
dc.identifier.citation2015Muliak N., Lukaszewicz A. Performance analysis of CNN-enhanced genetic algorithm for topological optimization in metamaterial design // Computer Systems of Design. Theory and Practice, Lviv. 2024. Vol 6. No 3. P. 1–8.
dc.identifier.citationenAPAMuliak, N., Zdobytskyi, A., & Lukaszewicz, A. (2024). Performance analysis of CNN-enhanced genetic algorithm for topological optimization in metamaterial design. Computer Systems of Design. Theory and Practice, 6(3), 1-8. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOMuliak N., Zdobytskyi A., Lukaszewicz A. (2024) Performance analysis of CNN-enhanced genetic algorithm for topological optimization in metamaterial design. Computer Systems of Design. Theory and Practice (Lviv), vol. 6, no 3, pp. 1-8.
dc.identifier.doihttps://doi.org/10.23939/cds2024.03.001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124081
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп’ютерні системи проектування. Теорія і практика, 3 (6), 2024
dc.relation.ispartofComputer Systems of Design. Theory and Practice, 3 (6), 2024
dc.relation.references[1] A. Tobias Maconachie, Martin Leary, Bill Lozanovski, Xuezhe Zhang, Ma Qian, Omar Faruque, Milan Brandt, Tobias Maconachie, Martin Leary, Bill Lozanovski, Xuezhe Zhang, Ma Qian, Omar Faruque, Milan Brandt, SLM lattice structures: Properties, performance, applications and challenges, Materials & Design, Vol. 183, 2019,108137, ISSN 0264-1275, https://doi.org/10.1016/j.matdes.2019.108137.
dc.relation.references[2] Kai Wei, Qidong Yang, Bin Ling, Haiqiong Xie, Zhaoliang Qu, Daining Fang, Mechanical responses of titanium 3D kagome lattice structure manufactured by selective laser melting, Extreme Mechanics Letters, Vol. 23,2018, pp. 41–48, ISSN2352-4316, https://doi.org/10.1016/j.eml.2018.07.001.
dc.relation.references[3] Xiaoya Zhai, Weiming Wang, Falai Chen, Jun Wu, Topology optimization of differentiable microstructures, Computer Methods in Applied Mechanics and Engineering, Vol. 418, Part A, 2024, 116530, ISSN0045-7825, https://doi.org/10.1016/j.cma.2023.116530.
dc.relation.references[4] Z. Li, F. Liu, W. Yang, S. Peng and J. Zhou, “A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects”, in IEEE Transactions on Neural Networks and Learning Systems, Vol. 33, No. 12,pp. 6999–7019, Dec. 2022. DOI: 10.1109/TNNLS.2021.3084827.
dc.relation.references[5] Zhao, X., Wang, L., Zhang, Y. et al. A review of convolutional neural networks in computer vision. Artif. Intell. Rev., 57, 99 (2024). https://doi.org/10.1007/s10462-024-10721-6
dc.relation.references[6] Hunter T. Kollmann, Diab W. Abueidda, Seid Koric, Erman Guleryuz, Nahil A. Sobh, Deep learning for topology optimization of 2D metamaterials, Materials & Design, Vol. 196, 2020, 109098, ISSN 0264-1275,https://doi.org/10.1016/j.matdes.2020.109098.
dc.relation.references[7] Viswanath, A., Abueidda, D. W., Modrek, M., Khan, K. A., Koric, S., & Abu Al-Rub, R. K. (2023). Gyroid-like metamaterials: Topology optimization and Deep Learning. arXiv. https://arxiv.org/abs/2303.10007
dc.relation.references[8] Martin P. Bendsøe and Ole Sigmund’s book, “Topology Optimization: Theory, Methods, and Applications”, is a comprehensive resource on the subject. The second edition, published by Springer in 2003, offers an in-depth exploration of topology optimization techniques and their applications.
dc.relation.references[9] A. Lambora, K. Gupta and K. Chopra, “Genetic Algorithm – A Literature Review”, 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 2019,pp. 380–384. DOI: 10.1109/COMITCon.2019.8862255.
dc.relation.references[10] F. N. E. Edison, E. Marcela Mosquera, T. Berenice Arguero and A. Julio Zambrano, “Experimental Study of Convergence and Stability of a Genetic Algorithm Using Different Selection Methods”, 2024 IEEE Eighth Ecuador Technical Chapters Meeting (ETCM), Cuenca, Ecuador, 2024, pp. 1–6. DOI:10.1109/ETCM63562.2024.10746169.
dc.relation.references[11] M. Yousef, L. Al Shehab, D. A. Ghani, H. Alazzam and M. Ghatasheh, “Enhancing Autism Disease Classification Using a Hybrid GA-KNN Approach for Feature Selection”, 2024 15th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 2024, pp. 1–7. DOI:10.1109/ICICS63486.2024.10638319
dc.relation.references[12] Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen, Yann Savoye, Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. 2014. Build-to-last: strength to weight 3D printed objects. ACM Trans. Graph.,33, 4, Article 97 (July 2014), 10 p. https://doi.org/10.1145/2601097.2601168.
dc.relation.references[13] Tobias Maconachie, Martin Leary, Bill Lozanovski, Xuezhe Zhang, Ma Qian, Omar Faruque, Milan Brandt, SLM lattice structures: Properties, performance, applications and challenges, Materials & Design, Vol. 183,2019, 108137, ISSN 0264-1275, https://doi.org/10.1016/j.matdes.2019.108137.
dc.relation.references[14] Dede, Luca & Borden, Michael & Hughes, Thomas (2012). Isogeometric Analysis for Topology Optimization with a Phase Field Model. Archives of Computational Methods in Engineering, 19. 10.1007/s11831-012-9075-z.
dc.relation.references[15] X. Z. Zhang, M. Leary, H. P. Tang, T. Song, M. Qian, Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges, Current Opinion in Solid State and Materials Science, Vol. 22, Iss. 3, 2018, pp. 75–99, ISSN 1359-0286,https://doi.org/10.1016/j.cossms.2018.05.002.
dc.relation.references[16] N. Muliak, A. Zdobytskyi, M. Lobur and U. Marikutsa, “Application of Genetic Algorithms in Designing and Optimizing Matrix Structures of Metamaterials”, 2024 IEEE 19th International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), Zozuli, Ukraine, 2024, pp. 29–32. DOI:10.1109/MEMSTECH63437.2024.10620056.
dc.relation.references[17] Chunze Yan, Liang Hao, Ahmed Hussein, Philippe Young, Juntong Huang, Wei Zhu, Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering, Materials Science and Engineering: A, Vol. 628, 2015, pp. 238–246, ISSN 0921-5093,https://doi.org/10.1016/j.msea.2015.01.06.
dc.relation.references[18] Ali Zargarian, Mohsen Esfahanian, Javad Kadkhodapour, Saeid Ziaei-Rad, Delaram Zamani, On the fatigue behavior of additive manufactured lattice structures, Theoretical and Applied Fracture Mechanics, Vol. 100,2019, pp. 225–232, ISSN 0167-8442, https://doi.org/10.1016/j.tafmec.2019.01.012.
dc.relation.references[19] Diab W. Abueidda, Mohammad Almasri, Rami Ammourah, Umberto Ravaioli, Iwona M. Jasiuk, Nahil A. Sobh, Prediction, and optimization of mechanical properties of composites using convolutional neural networks, Composite Structures, Vol. 227, 2019, 111264, ISSN 0263-8223.
dc.relation.references[20] Claus Claeys, Noé Geraldo Rocha de Melo Filho, Lucas Van Belle, Elke Deckers, Wim Desmet, Design and validation of metamaterials for multiple structural stop bands in waveguides, Extreme Mechanics Letters, Vol. 12,2017, pp. 7–22, ISSN 2352-4316.
dc.relation.referencesen[1] A. Tobias Maconachie, Martin Leary, Bill Lozanovski, Xuezhe Zhang, Ma Qian, Omar Faruque, Milan Brandt, Tobias Maconachie, Martin Leary, Bill Lozanovski, Xuezhe Zhang, Ma Qian, Omar Faruque, Milan Brandt, SLM lattice structures: Properties, performance, applications and challenges, Materials & Design, Vol. 183, 2019,108137, ISSN 0264-1275, https://doi.org/10.1016/j.matdes.2019.108137.
dc.relation.referencesen[2] Kai Wei, Qidong Yang, Bin Ling, Haiqiong Xie, Zhaoliang Qu, Daining Fang, Mechanical responses of titanium 3D kagome lattice structure manufactured by selective laser melting, Extreme Mechanics Letters, Vol. 23,2018, pp. 41–48, ISSN2352-4316, https://doi.org/10.1016/j.eml.2018.07.001.
dc.relation.referencesen[3] Xiaoya Zhai, Weiming Wang, Falai Chen, Jun Wu, Topology optimization of differentiable microstructures, Computer Methods in Applied Mechanics and Engineering, Vol. 418, Part A, 2024, 116530, ISSN0045-7825, https://doi.org/10.1016/j.cma.2023.116530.
dc.relation.referencesen[4] Z. Li, F. Liu, W. Yang, S. Peng and J. Zhou, "A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects", in IEEE Transactions on Neural Networks and Learning Systems, Vol. 33, No. 12,pp. 6999–7019, Dec. 2022. DOI: 10.1109/TNNLS.2021.3084827.
dc.relation.referencesen[5] Zhao, X., Wang, L., Zhang, Y. et al. A review of convolutional neural networks in computer vision. Artif. Intell. Rev., 57, 99 (2024). https://doi.org/10.1007/s10462-024-10721-6
dc.relation.referencesen[6] Hunter T. Kollmann, Diab W. Abueidda, Seid Koric, Erman Guleryuz, Nahil A. Sobh, Deep learning for topology optimization of 2D metamaterials, Materials & Design, Vol. 196, 2020, 109098, ISSN 0264-1275,https://doi.org/10.1016/j.matdes.2020.109098.
dc.relation.referencesen[7] Viswanath, A., Abueidda, D. W., Modrek, M., Khan, K. A., Koric, S., & Abu Al-Rub, R. K. (2023). Gyroid-like metamaterials: Topology optimization and Deep Learning. arXiv. https://arxiv.org/abs/2303.10007
dc.relation.referencesen[8] Martin P. Bendsøe and Ole Sigmund’s book, "Topology Optimization: Theory, Methods, and Applications", is a comprehensive resource on the subject. The second edition, published by Springer in 2003, offers an in-depth exploration of topology optimization techniques and their applications.
dc.relation.referencesen[9] A. Lambora, K. Gupta and K. Chopra, "Genetic Algorithm – A Literature Review", 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 2019,pp. 380–384. DOI: 10.1109/COMITCon.2019.8862255.
dc.relation.referencesen[10] F. N. E. Edison, E. Marcela Mosquera, T. Berenice Arguero and A. Julio Zambrano, "Experimental Study of Convergence and Stability of a Genetic Algorithm Using Different Selection Methods", 2024 IEEE Eighth Ecuador Technical Chapters Meeting (ETCM), Cuenca, Ecuador, 2024, pp. 1–6. DOI:10.1109/ETCM63562.2024.10746169.
dc.relation.referencesen[11] M. Yousef, L. Al Shehab, D. A. Ghani, H. Alazzam and M. Ghatasheh, "Enhancing Autism Disease Classification Using a Hybrid GA-KNN Approach for Feature Selection", 2024 15th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 2024, pp. 1–7. DOI:10.1109/ICICS63486.2024.10638319
dc.relation.referencesen[12] Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen, Yann Savoye, Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. 2014. Build-to-last: strength to weight 3D printed objects. ACM Trans. Graph.,33, 4, Article 97 (July 2014), 10 p. https://doi.org/10.1145/2601097.2601168.
dc.relation.referencesen[13] Tobias Maconachie, Martin Leary, Bill Lozanovski, Xuezhe Zhang, Ma Qian, Omar Faruque, Milan Brandt, SLM lattice structures: Properties, performance, applications and challenges, Materials & Design, Vol. 183,2019, 108137, ISSN 0264-1275, https://doi.org/10.1016/j.matdes.2019.108137.
dc.relation.referencesen[14] Dede, Luca & Borden, Michael & Hughes, Thomas (2012). Isogeometric Analysis for Topology Optimization with a Phase Field Model. Archives of Computational Methods in Engineering, 19. 10.1007/s11831-012-9075-z.
dc.relation.referencesen[15] X. Z. Zhang, M. Leary, H. P. Tang, T. Song, M. Qian, Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges, Current Opinion in Solid State and Materials Science, Vol. 22, Iss. 3, 2018, pp. 75–99, ISSN 1359-0286,https://doi.org/10.1016/j.cossms.2018.05.002.
dc.relation.referencesen[16] N. Muliak, A. Zdobytskyi, M. Lobur and U. Marikutsa, "Application of Genetic Algorithms in Designing and Optimizing Matrix Structures of Metamaterials", 2024 IEEE 19th International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), Zozuli, Ukraine, 2024, pp. 29–32. DOI:10.1109/MEMSTECH63437.2024.10620056.
dc.relation.referencesen[17] Chunze Yan, Liang Hao, Ahmed Hussein, Philippe Young, Juntong Huang, Wei Zhu, Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering, Materials Science and Engineering: A, Vol. 628, 2015, pp. 238–246, ISSN 0921-5093,https://doi.org/10.1016/j.msea.2015.01.06.
dc.relation.referencesen[18] Ali Zargarian, Mohsen Esfahanian, Javad Kadkhodapour, Saeid Ziaei-Rad, Delaram Zamani, On the fatigue behavior of additive manufactured lattice structures, Theoretical and Applied Fracture Mechanics, Vol. 100,2019, pp. 225–232, ISSN 0167-8442, https://doi.org/10.1016/j.tafmec.2019.01.012.
dc.relation.referencesen[19] Diab W. Abueidda, Mohammad Almasri, Rami Ammourah, Umberto Ravaioli, Iwona M. Jasiuk, Nahil A. Sobh, Prediction, and optimization of mechanical properties of composites using convolutional neural networks, Composite Structures, Vol. 227, 2019, 111264, ISSN 0263-8223.
dc.relation.referencesen[20] Claus Claeys, Noé Geraldo Rocha de Melo Filho, Lucas Van Belle, Elke Deckers, Wim Desmet, Design and validation of metamaterials for multiple structural stop bands in waveguides, Extreme Mechanics Letters, Vol. 12,2017, pp. 7–22, ISSN 2352-4316.
dc.relation.urihttps://doi.org/10.1016/j.matdes.2019.108137
dc.relation.urihttps://doi.org/10.1016/j.eml.2018.07.001
dc.relation.urihttps://doi.org/10.1016/j.cma.2023.116530
dc.relation.urihttps://doi.org/10.1007/s10462-024-10721-6
dc.relation.urihttps://doi.org/10.1016/j.matdes.2020.109098
dc.relation.urihttps://arxiv.org/abs/2303.10007
dc.relation.urihttps://doi.org/10.1145/2601097.2601168
dc.relation.urihttps://doi.org/10.1016/j.cossms.2018.05.002
dc.relation.urihttps://doi.org/10.1016/j.msea.2015.01.06
dc.relation.urihttps://doi.org/10.1016/j.tafmec.2019.01.012
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.rights.holder© Muliak N., Zdobytskyi A., Lukaszewicz A., 2024
dc.subjectметаматеріал
dc.subjectтопологічна оптимізація
dc.subjectгенетичний алгоритм
dc.subjectнейронна мережа
dc.subjectґратчасті структури
dc.subjectкритерії аналізу
dc.subjectmetamaterial
dc.subjecttopological optimization
dc.subjectgenetic algorithm
dc.subjectneural network
dc.subjectlattice structures
dc.subjectanalysis metrics
dc.titlePerformance analysis of CNN-enhanced genetic algorithm for topological optimization in metamaterial design
dc.title.alternativeАналіз продуктивності генетичного алгоритму, доповненого згортковою нейронною мережею, для топологічної оптимізації метаматеріалів
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v6n3_Muliak_N-Performance_analysis_of_CNN_1-8.pdf
Size:
314.98 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.86 KB
Format:
Plain Text
Description: