On the new hyperbolic function solutions to the (2+1)-dimensional BKK system

dc.citation.conferenceLitteris et Artibus
dc.contributor.affiliationFirat Universityuk_UA
dc.contributor.authorHasan Bulut
dc.contributor.authorTukur Abdulkadir Sulaiman
dc.coverage.countryUAuk_UA
dc.coverage.placenameLvivuk_UA
dc.date.accessioned2018-04-11T13:18:24Z
dc.date.available2018-04-11T13:18:24Z
dc.date.issued2016
dc.description.abstractIn this paper, we successfully implement the powerful sine-Gordon expansion method the (2+1)-dimensional BKK system. We succeed in constructing some new analytical hyperbolic function solutions. We check all the analytical solutions by using Wolfram Mathematica 9, and they are indeed verified to be the solutions of (2+1)-dimensional BKK system. We also plot the two- and threedimensional surfaces for all the analytical solutions obtained in this paper using the same computer program. We finally, submit a comprehensive conclusion.uk_UA
dc.format.pages87-90
dc.identifier.citationHasan Bulut On the new hyperbolic function solutions to the (2+1)-dimensional BKK system / Hasan Bulut, Tukur Abdulkadir Sulaiman // Litteris et Artibus : proceedings of the 6th International youth science forum, November 24–26, 2016, Lviv, Ukraine / Lviv Polytechnic National University. – Lviv : Lviv Polytechnic Publishing House, 2016. – P. 87–90. – Bibliography: 22 titles.uk_UA
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/40259
dc.language.isoenuk_UA
dc.publisherLviv Polytechnic Publishing Houseuk_UA
dc.relation.referencesen[1] H.M. Baskonus and H. Bulut, “Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics”, Waves in Random and Complex Media, 26(2), 189-196, 2016. [2] H.M. Baskonus, H. Bulut and F.M. Belgacem, “Analytical Solutions for Nonlinear Long-Short Wave Interaction Systems with Highly Complex Structure”, Journal of Computational and Applied Mathematics, 15 pages, 2016. [3] M.A. Abdou and A.A. Soliman, “Variational Iteration method for Solving Burger’s and Coupled Buger’s Equations”, Journal Computational and Applied Mathematics . 181, 245-251, 2005. [4] M.A. Noor, K.I. Noor, A. Waheed and E.A. Al-Said, “Some new solitonary solutions of the modified Benjamin-Bona-Mahony equation”, Computer and Mathematics with Applications. 62, 2126-2131, 2011. [5] E.M.E. Zayed and K.A.E. Alurrfi, “The Modified Extented Tanh-Function Method and its Applications to the Generalized KdV-mKdV Equation with Any-Order Nonlinear Term”, International Journal of Enviromental Engineering Science and Technology. 1(8), 165-170, 2013. [6] C. Ye, “New Exact Solutions for the Generalized mKdV Equation with variable coefficients”, Applied Mathathematical Sciences, 5(75), 1484-1490, 2010. [7] M. Song, S. Li and J. Cao, “New Exact Solutions for the (2+1)-Dimensional Broer-Kaup-Kupershmidt Equations”, Abstract and Applied Analysis, 9 pages, 2010. [8] M.M. Hossain, H.O. Roshid, M.A.N. Sheikh, “Abundant Exact Traveling Wave Solutions of the (2+1)-Dimensional Couple Broer-Kaup Equations”, Journal for Foundations and Applications of Physics, 3(1), 13 pages, 2016. [9] E. Yomba, “The Modified Extended Fan Sub-Equation Method and its Application to the (2+1)-Dimensional Broer-Kaup-Kuperschmidt Equations”, Chaos, Solitons and Fractals. 27(1), 187-196, 2006. [10] Y. Jin-Ping and L. Sen-Yue, “Abundant Coherent Structures of the (2+1)-Dimensional Broer-Kaup-Kupershmidt Equation”, Zeitschrift fur Natur-forschung A. 56, 619-625, 2001. [11] N. Taghizadeh and A. Neirameh, “New Complex Travelling Wave Solutions to the Nonlinear Broer-Kaup-Kupershmidt System”, Middle-East Journal of Scientific Research. 11(11), 1542-1545, 2012. [12] F. Jian-Ping and Z. Chun-Long, “New Exact Excitations and Soliton Fission and Fusion for the (2+1)-Dimensional Broer-Kaup-Kupershmidt System”, Chinese Physics B. 14(4), 669-675, 2005. [13] X.Y. Wen, “N-Soliton Solutions and Localized Structures for the (2+1)-Dimensional Broer-Kaup-Kupershmidt System”, Nonlinear Analysis: RealWorld Applications. 12(6), 3346-3355, 2011. [14]C.L. Bai and H. Zhao, “A New General Algebraic Method and its Applications to the (2+1)-Dimensional Broer-Kaup-Kupershmidt Equations”, Applied Mathematics and Computation. 217(4), 1719-1732, 2010. [15] X.R. Hu and Y. Chen, “Nonlocal Symmetries, Consistent Riccati Expansion Integrability, and their Applications of the (2+1)-Dimensional Broer-Kaup-Kupershmidt System”, Chin. Phys. B. 24, 090203 2015. [16] J. Lin and H.M. Li, “Painleve Integrability and Abundant Localized Structures of (2+1)-Dimensional Higher Order Broer-Kaup System”, Z. Naturforsch. 57, 929-936, 2002. [17] A.G. Davodi, D.D. Ganji and A. Asgari, “Finding General and Explicit Solutions (2+1)-Dimensional Broer-Kaup-Kupershmidt System Nonlinear Equation by Exp-Function Method”, Applied Mathematics and Computation. 217(4), 1415-1420, 2010. [18]C.L. Chen and S.Y. Lou, “CTE Solvability and Exact Solution to the Broer-Kaup System”, Chin. Phys. Lett. 30(11), 110202, 2013. [19]C. Yan, “A Simple Transformation for Nonlinear Waves”, Physics Letters A, 22(4), 77-84, 1996. [20] H.M. Baskonus, “New AcousticWave Behaviors to the Davey-Stewartson Equation with Power Nonlinearity Arising in Fluid Dynamics”, Nonlinear Dynamics, 86(1), 177-183, 2016. [21]Z. Yan and H. Zhang, “New Explicit and exact Travelling Wave Solutions for a System of Variant Boussinesq equations in Mathematical Physics”, Physics Letters A, 252, 291-296, 1999. [22] E.W. Weisstein, “Concise Encyclopedia of Mathematics”, 2nd edition. New York: CRC Press, 2002.uk_UA
dc.subjectThe sine-Gordon expansion methoduk_UA
dc.subjectthe (2+1)- dimensional BKK systemuk_UA
dc.subjecthyperbolic function solutionuk_UA
dc.titleOn the new hyperbolic function solutions to the (2+1)-dimensional BKK systemuk_UA
dc.typeConference Abstractuk_UA

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LEA-2016-87-90.pdf
Size:
764.73 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.99 KB
Format:
Item-specific license agreed upon to submission
Description: