Thepeculiaritiesofformation of cross-linked poly(2-ethyl-2-oxazoline)filmsand nanocompositeson theirbase

dc.citation.epage186
dc.citation.issue2
dc.citation.spage180
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorШевчук, О. М.
dc.contributor.authorБукартик, Н. М.
dc.contributor.authorЧобіт, М. Р.
dc.contributor.authorНадашкевич, З. Я.
dc.contributor.authorТокарев, В. С.
dc.contributor.authorShevchuk, O. M.
dc.contributor.authorBukartyk, N. M.
dc.contributor.authorChobit, M. R.
dc.contributor.authorNadashkevych, Z. Ya.
dc.contributor.authorTokarev, V. S.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T07:35:33Z
dc.date.available2024-01-22T07:35:33Z
dc.date.created2020-03-16
dc.date.issued2020-03-16
dc.description.abstractШляхом радикального структурування, ініційованого пероксидовмісними реакційноздатними кополімерами, отримано структуровані полімерні та нанокомпозитні плівки на основі полі(2-етил-2-оксазоліну) і модифікованих мінеральних наночастинок гідроксиапатиту та діоксиду силіцію. Досліджено вплив температури і додаткового зшиваючого агенту на особливості процесу отвердження. Отримані результати свідчать, що при підвищених температурах залежність гель-фракції від часу має екстремальний характер. Отримані структуровані нанокомпозитні плівки характеризуються покращеними фізико-механічними властивостями, що залежать від природи мінеральних наночастинок, вмісту пероксидвмісного кополімеру та присутності додаткового зшиваючого агента.
dc.description.abstractCross-linked polymeric and nanocomposite films based on poly(2-ethyl-2-oxazoline) and modified mineral nanoparticles of hydroxyapatite and silica have been obtained via radical crosslinking initiated by peroxide containing reactive copolymers. The influence of temperature and additional cross-linking agents on the peculiarities of curing process has been studied. The obtained results reveal that at high temperatures the dependence of film gel-fraction values on time has the extremal character. Obtained cross-linked nanocomposite films are characterized by improved physico-mechanical properties that depend on the nature of mineral nanoparticles, content of peroxide containing copolymer and on the presence of additional cross-linking agent.
dc.format.extent180-186
dc.format.pages7
dc.identifier.citationThepeculiaritiesofformation of cross-linked poly(2-ethyl-2-oxazoline)filmsand nanocompositeson theirbase / O. M. Shevchuk, N. M. Bukartyk, M. R. Chobit, Z. Ya. Nadashkevych, V. S. Tokarev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 2. — P. 180–186.
dc.identifier.citationenThepeculiaritiesofformation of cross-linked poly(2-ethyl-2-oxazoline)filmsand nanocompositeson theirbase / O. M. Shevchuk, N. M. Bukartyk, M. R. Chobit, Z. Ya. Nadashkevych, V. S. Tokarev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 2. — P. 180–186.
dc.identifier.doidoi.org/10.23939/ctas2020.02.180
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60826
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (3), 2020
dc.relation.references1. Roy, R., Roy, R. A. & Roy, D. M. (1986). Alternative perspectives on “quasi-crystallinity”: non-uniformity and nanocomposites. Materials Letters, Vol. 4(8-9), 323–328. doi: 10.1016/0167-577X(86)90063-7
dc.relation.references2. Huang T.-C., Yeh J.-M. & Lai C.-Y. (2012). Polymer nanocomposite coatings. In F. Gao (Ed.), Advances in Polymer Nanocomposites. Types and Applications. (pp. 605–638). Woodhead Publishing Limited: Cambridge.
dc.relation.references3. Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., Kumar, R. (2013). Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites – A review. Progress in Polymer Science, Vol. 38, 1232–1261. doi:10.1016/j.progpolymsci.2013.02.003.
dc.relation.references4. Mulvaney, P. (2001). Not All That's Gold Does Glitter. MRS bulletin, Vol. 26 (12), 1009–1014. doi:10.1557/mrs2001.258.
dc.relation.references5. Crosby, A. & Lee, J.-Y. (2007). Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties. Polymer Review, V0l. 47 (2), 217–229. doi: 10.1080/15583720701271278
dc.relation.references6. Krasinskyi, V. V., Suberlyak, O. V., Chekailo1, M. V. & Dulebova L. (2019). Investigation of structure of nanocomposites on the basis of mixture of polypropylene and modified polyamide with using scanning electronic microscopy. Chemistry, Technology and Application of Substances, Vol. 2(1), 138–144. doi: 10.23939/ctas2019.01.138
dc.relation.references7. Haraguchi, K. & Takehisa, T. (2002). Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Advanced Materials, Vol. 14, 1120–1124. doi:10.1016/j.cossms.2008.05.001.
dc.relation.references8. Zhang, Q., Zhang, L., Lin, J. (2017). Percolating behavior of nanoparticles in block copolymer host: hybrid particle-field simulations. Journal of Physical Chemistry C, Vol. 121(42), 23705–23715. doi: 10.1021/acs.jpcc.7b07337.
dc.relation.references9. Luo, X., Zhong, J., Zhou, Q., Du, S., Yuan, S, & Liu Y. (2018). Cationic reduced graphene oxide as selfaligned nanofiller in the epoxy nanocomposite coating with excellent anticorrosive performance and its high antibacterial activity. ACS Applied Materials Interfaces, Vol. 10 (21), 18400–18415. doi:10.1021/acsami.8b01982.
dc.relation.references10. Lai, J. (2014). Interrelationship between crosslinking structure, molecular stability and cytocompatibility of amniotic membranes crosslinked with glutaraldehdye of varying concentrations. RSC Advances, Vol. 4, 18871–18880. doi:10.1039/C4RA01930J.
dc.relation.references11. Dulong, V., Lack, S., Le Cerf, D., Picton, L. & Muller, G. (2004). Hyaluronan-based hydrogels particles prepared by crosslinking with trisodium trimetaphosphate. Synthesis and characterization // Carbohydrate Polymers, Vol. 57, 1–6. doi:10.1016/ j.carbpol.2003.12.006.
dc.relation.references12. Bajpai, S. K., Saxena, S. K. & Sharma, S. (2006). Swelling behavior of barium ions crosslinked bipolymeric sodium alginate–carboxymethyl guargum blend beads. Reactive Functional Polymers, Vol. 66, 659–666. doi:10.1016/j. reactfunctpolym.2005.10.019.
dc.relation.references13. Mano, J. F. (Ed.) (2012). Biomimetic Approaches for Biomaterials Development. Weinheim: John Wiley & Sons, 573p.
dc.relation.references14. Shevchuk, O. M., Bukartyk, N. M. Petrus, R. Yu. & Tokarev, V. S. (2014). Polymer nanocomposite films with embedded carbon nanotubes // Bulletin of Lviv Polytechnic National University. Vol. 787, 361–366. http://science.lpnu.ua/schmt/all-volumes-andissues/volume-787-2014/.
dc.relation.references15. Shevchuk, O., Wagenknecht, U., Wiessner, S., Bukartyk, N., Chobit, M. & Tokarev, V. (2015). Flame-retardant polymer composites on the basis of modified magnesium hydroxide. Chemistry and Chemical Technology, Vol. 9(2), 149–155. doi: 10.23939/chcht09.02.149.
dc.relation.references16. Hoogenboom, R. (2009). Poly(2-oxazoline)s: A Polymer Class with Numerous Potential Applications. Angewandte Chemie, International Ed., Vol. 48(43), 7978–7994. doi: 10.1002/anie.200901607.
dc.relation.references17. Serdiuk, V. O., Shevchuk, O. M., Pereviznyk, O. B., Bukartyk, N. M. & Tokarev, V. S. (2018). Reactive peroxide macroinitiator for cross-linking biocompatible polymers. Bulletin of Lviv Polytechnic National University, 886, 226–235.
dc.relation.references18. Vasilyev, V. P., Glus, L. S. & Gubar, S. P. (1985). Elaboration of gas-chromatography method of peroxide monomer analysis. Bulletin of Lviv Polytechnic Institute, Vol. 191, 24–26.
dc.relation.references19. Toropceva, A. M., Belogorodskaya, K. V. & Bondarenko, V. M. (1972). Laboratory Training on Chemistry and Technology of High Molecular Substances. Leningrad, USSR: Khimiya.
dc.relation.references20. Shevchuk, O. M., Bukartyk, N. M., Nadashkevych, Z. Ya. & Tokarev V. S. (2019). Synthesis and properties of silica nanoparticles with functional polymer shell. Chemistry, Technology and Application of Subatances. Vol. 2(1), 153–159. doi: 10.23939/ctas2019.01.153.
dc.relation.references21. Shevchuk, O. M., Chobit, M. R., Bukartyk, N. M. & Tokarev V. S. (2012). Obtaining of hydroxyapatite nanoparticles with functional polymer shell. Polimerny Zhurnal, Vol. 34(5), 451–456
dc.relation.references22. Colombo, A., Gherardi, F., Goidanich, S., Delaney, J. K., de la Rie, E. R., Ubaldi, M. C. & Simonutti, R. (2015). Highly transparent poly(2-ethyl-2-oxazoline)-TiO2 nanocomposite coatings for the conservation of matte painted artworks // RSC Advances, V. 5, 84879-84888. doi: 10.1039/c5ra10895k.
dc.relation.referencesen1. Roy, R., Roy, R. A. & Roy, D. M. (1986). Alternative perspectives on "quasi-crystallinity": non-uniformity and nanocomposites. Materials Letters, Vol. 4(8-9), 323–328. doi: 10.1016/0167-577X(86)90063-7
dc.relation.referencesen2. Huang T.-C., Yeh J.-M. & Lai C.-Y. (2012). Polymer nanocomposite coatings. In F. Gao (Ed.), Advances in Polymer Nanocomposites. Types and Applications. (pp. 605–638). Woodhead Publishing Limited: Cambridge.
dc.relation.referencesen3. Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., Kumar, R. (2013). Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites – A review. Progress in Polymer Science, Vol. 38, 1232–1261. doi:10.1016/j.progpolymsci.2013.02.003.
dc.relation.referencesen4. Mulvaney, P. (2001). Not All That's Gold Does Glitter. MRS bulletin, Vol. 26 (12), 1009–1014. doi:10.1557/mrs2001.258.
dc.relation.referencesen5. Crosby, A. & Lee, J.-Y. (2007). Polymer Nanocomposites: The "Nano" Effect on Mechanical Properties. Polymer Review, V0l. 47 (2), 217–229. doi: 10.1080/15583720701271278
dc.relation.referencesen6. Krasinskyi, V. V., Suberlyak, O. V., Chekailo1, M. V. & Dulebova L. (2019). Investigation of structure of nanocomposites on the basis of mixture of polypropylene and modified polyamide with using scanning electronic microscopy. Chemistry, Technology and Application of Substances, Vol. 2(1), 138–144. doi: 10.23939/ctas2019.01.138
dc.relation.referencesen7. Haraguchi, K. & Takehisa, T. (2002). Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Advanced Materials, Vol. 14, 1120–1124. doi:10.1016/j.cossms.2008.05.001.
dc.relation.referencesen8. Zhang, Q., Zhang, L., Lin, J. (2017). Percolating behavior of nanoparticles in block copolymer host: hybrid particle-field simulations. Journal of Physical Chemistry C, Vol. 121(42), 23705–23715. doi: 10.1021/acs.jpcc.7b07337.
dc.relation.referencesen9. Luo, X., Zhong, J., Zhou, Q., Du, S., Yuan, S, & Liu Y. (2018). Cationic reduced graphene oxide as selfaligned nanofiller in the epoxy nanocomposite coating with excellent anticorrosive performance and its high antibacterial activity. ACS Applied Materials Interfaces, Vol. 10 (21), 18400–18415. doi:10.1021/acsami.8b01982.
dc.relation.referencesen10. Lai, J. (2014). Interrelationship between crosslinking structure, molecular stability and cytocompatibility of amniotic membranes crosslinked with glutaraldehdye of varying concentrations. RSC Advances, Vol. 4, 18871–18880. doi:10.1039/P.4RA01930J.
dc.relation.referencesen11. Dulong, V., Lack, S., Le Cerf, D., Picton, L. & Muller, G. (2004). Hyaluronan-based hydrogels particles prepared by crosslinking with trisodium trimetaphosphate. Synthesis and characterization, Carbohydrate Polymers, Vol. 57, 1–6. doi:10.1016/ j.carbpol.2003.12.006.
dc.relation.referencesen12. Bajpai, S. K., Saxena, S. K. & Sharma, S. (2006). Swelling behavior of barium ions crosslinked bipolymeric sodium alginate–carboxymethyl guargum blend beads. Reactive Functional Polymers, Vol. 66, 659–666. doi:10.1016/j. reactfunctpolym.2005.10.019.
dc.relation.referencesen13. Mano, J. F. (Ed.) (2012). Biomimetic Approaches for Biomaterials Development. Weinheim: John Wiley & Sons, 573p.
dc.relation.referencesen14. Shevchuk, O. M., Bukartyk, N. M. Petrus, R. Yu. & Tokarev, V. S. (2014). Polymer nanocomposite films with embedded carbon nanotubes, Bulletin of Lviv Polytechnic National University. Vol. 787, 361–366. http://science.lpnu.ua/schmt/all-volumes-andissues/volume-787-2014/.
dc.relation.referencesen15. Shevchuk, O., Wagenknecht, U., Wiessner, S., Bukartyk, N., Chobit, M. & Tokarev, V. (2015). Flame-retardant polymer composites on the basis of modified magnesium hydroxide. Chemistry and Chemical Technology, Vol. 9(2), 149–155. doi: 10.23939/chcht09.02.149.
dc.relation.referencesen16. Hoogenboom, R. (2009). Poly(2-oxazoline)s: A Polymer Class with Numerous Potential Applications. Angewandte Chemie, International Ed., Vol. 48(43), 7978–7994. doi: 10.1002/anie.200901607.
dc.relation.referencesen17. Serdiuk, V. O., Shevchuk, O. M., Pereviznyk, O. B., Bukartyk, N. M. & Tokarev, V. S. (2018). Reactive peroxide macroinitiator for cross-linking biocompatible polymers. Bulletin of Lviv Polytechnic National University, 886, 226–235.
dc.relation.referencesen18. Vasilyev, V. P., Glus, L. S. & Gubar, S. P. (1985). Elaboration of gas-chromatography method of peroxide monomer analysis. Bulletin of Lviv Polytechnic Institute, Vol. 191, 24–26.
dc.relation.referencesen19. Toropceva, A. M., Belogorodskaya, K. V. & Bondarenko, V. M. (1972). Laboratory Training on Chemistry and Technology of High Molecular Substances. Leningrad, USSR: Khimiya.
dc.relation.referencesen20. Shevchuk, O. M., Bukartyk, N. M., Nadashkevych, Z. Ya. & Tokarev V. S. (2019). Synthesis and properties of silica nanoparticles with functional polymer shell. Chemistry, Technology and Application of Subatances. Vol. 2(1), 153–159. doi: 10.23939/ctas2019.01.153.
dc.relation.referencesen21. Shevchuk, O. M., Chobit, M. R., Bukartyk, N. M. & Tokarev V. S. (2012). Obtaining of hydroxyapatite nanoparticles with functional polymer shell. Polimerny Zhurnal, Vol. 34(5), 451–456
dc.relation.referencesen22. Colombo, A., Gherardi, F., Goidanich, S., Delaney, J. K., de la Rie, E. R., Ubaldi, M. C. & Simonutti, R. (2015). Highly transparent poly(2-ethyl-2-oxazoline)-TiO2 nanocomposite coatings for the conservation of matte painted artworks, RSC Advances, V. 5, 84879-84888. doi: 10.1039/P.5ra10895k.
dc.relation.urihttp://science.lpnu.ua/schmt/all-volumes-andissues/volume-787-2014/
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectнаночастинки
dc.subjectструктурування
dc.subjectнанокомпозит
dc.subjectфізико-механічні властивості
dc.subjectpolyoxazoline
dc.subjectnanoparticles
dc.subjectcross-linking
dc.subjectnanocomposite
dc.subjectphysico-mechanical properties
dc.titleThepeculiaritiesofformation of cross-linked poly(2-ethyl-2-oxazoline)filmsand nanocompositeson theirbase
dc.title.alternativeОсобливості формування структурованих плівок полі(2-етил-2-оксазоліну) та нанокомпозитів на їх основі
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2020v3n2_Shevchuk_O_M-Thepeculiaritiesofformation_180-186.pdf
Size:
603.8 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2020v3n2_Shevchuk_O_M-Thepeculiaritiesofformation_180-186__COVER.png
Size:
506.28 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.93 KB
Format:
Plain Text
Description: