Hydrogels based on natural polymers structured with propylene glycol diepoxide for drug delivery

dc.citation.epage183
dc.citation.issue2
dc.citation.spage176
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorГнип, А. В.
dc.contributor.authorБукартик, Н. М.
dc.contributor.authorМайкович, О. В.
dc.contributor.authorЧеркас, Ю. В.
dc.contributor.authorНосова, Н. Г.
dc.contributor.authorВарваренко, С. М.
dc.contributor.authorHnyp, A. V.
dc.contributor.authorBykartyk, N. M.
dc.contributor.authorMaikovych, O. V.
dc.contributor.authorCherkas, Yu. V.
dc.contributor.authorNosova, N. G.
dc.contributor.authorVarvarenko, S. M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2026-01-15T13:53:23Z
dc.date.created2024-10-10
dc.date.issued2024-10-10
dc.description.abstractУ статті наведено умови синтезу та результати характеристики одержаних желатинових та желатин-альгінатних гідрогелів, структурованих діепоксидом поліпропіленгліколю. Досліджено набрякання у воді, фізіологічному розчині та модельному ексудаті, визначено гель-фракцію та границю міцності синтезованих зразків. Отримано закономірності насичення медичними засобами і їх вивільнення у модельні середовища. Розглянуто потенційні можливості використан- ня цих матеріалів для трансдермальної доставки препаратів.
dc.description.abstractThe article presents the conditions of synthesis and the results of characterization of the obtained gelatin and gelatin-alginate hydrogels structured with polypropylene glycol diepoxide. The swelling in water, saline, and model exudate was studied, and the gel fraction and tensile strength of the synthesized samples were determined. The regularities of saturation with drugs and their release into model environments were obtained. The potential use of these materials for transdermal drug delivery is considered.
dc.format.extent176-183
dc.format.pages8
dc.identifier.citationHydrogels based on natural polymers structured with propylene glycol diepoxide for drug delivery / A. V. Hnyp, N. M. Bykartyk, O. V. Maikovych, Yu. V. Cherkas, N. G. Nosova, S. M. Varvarenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 7. — No 2. — P. 176–183.
dc.identifier.citation2015Hydrogels based on natural polymers structured with propylene glycol diepoxide for drug delivery / Hnyp A. V. та ін. // Chemistry, Technology and Application of Substances, Lviv. 2024. Vol 7. No 2. P. 176–183.
dc.identifier.citationenAPAHnyp, A. V., Bykartyk, N. M., Maikovych, O. V., Cherkas, Yu. V., Nosova, N. G., & Varvarenko, S. M. (2024). Hydrogels based on natural polymers structured with propylene glycol diepoxide for drug delivery. Chemistry, Technology and Application of Substances, 7(2), 176-183. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOHnyp A. V., Bykartyk N. M., Maikovych O. V., Cherkas Yu. V., Nosova N. G., Varvarenko S. M. (2024) Hydrogels based on natural polymers structured with propylene glycol diepoxide for drug delivery. Chemistry, Technology and Application of Substances (Lviv), vol. 7, no 2, pp. 176-183.
dc.identifier.doihttps://doi.org/10.23939/ctas2024.02.176
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124454
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (7), 2024
dc.relation.references1. Bruck, S. D. (1998). Book review: Electrically assisted transdermal and topical drug delivery, by ajay k. Banga. Critical Reviews in Therapeutic Drug Carrier Systems, 15(6), 2. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v15.i6.40
dc.relation.references2. Vasylev A. E., Krasniuk Y. Y., Ravykumar S.(2001). Transdermalnye terapevtycheskye systemy dostavky lekarstvennykh veshchestv. Khymykofarmatsevtycheskyi zhurnal, 11(35), 29–42
dc.relation.references3. Samchenko, Yu. M., Pasmurtseva, N. A., & Ulberh, Z. R. (2007). Dyffuzyia lekarstvennykh preparatov yz hydrohelevykh nanoreaktorov. Dopovidi Natsionalnoi akademii nauk Ukrainy, 6, 143.
dc.relation.references4. Kiyozumi, T., Kanatani, Y., Ishihara, M., Saitoh, D., Shimizu, J., Yura, H., Suzuki, S., Okada, Y., & Kikuchi, M. (2006). Medium (Dmem/f12) containing chitosan hydrogel as adhesive and dressing in autologous skin grafts and accelerator in the healing process. Journal of Biomedical Materials Research Part B: Applied Biomaterials,79B(1), 129–136. https://doi.org/10.1002/jbm.b.30522
dc.relation.references5. Larrañeta, E., Stewart, S., Ervine, M., Al- Kasasbeh, R., & Donnelly, R. (2018). Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications. Journal of Functional Biomaterials, 9(1),13. https://doi.org/10.3390/jfb9010013
dc.relation.references6. McKenzie, M., Betts, D., Suh, A., Bui, K., Kim, L., & Cho, H. (2015). Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules,20(11), 20397–20408. https://doi.org/10.3390/molecules201119705
dc.relation.references7. Gu, D., O’Connor, A. J., G. H. Qiao, G., & Ladewig, K. (2017). Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opinion on Drug Delivery, 14(7), 879–895. https://doi.org/10.1080/17425247.2017.1245290
dc.relation.references8. Yang, Z., Nie, S., Hsiao, W. W., & Pam, W.(2011). Thermoreversible Pluronic® F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: In vitro drug release, cell cytotoxicity, and uptake studies. International Journal of Nanomedicine,151. https://doi.org/10.2147/IJN.S15057
dc.relation.references9. Donnelly, R. F. (2012). Microneedlemediated transdermal and intradermal drug delivery. Wiley-Blackwell.
dc.relation.references10. Rezvanian, M., Ahmad, N., Mohd Amin, M. C. I., & Ng, S.-F. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. International Journal of Biological Macromolecules, 97,131–140. https://doi.org/10.1016/j.ijbiomac.2016.12.079
dc.relation.references11. Maikovych, O., Nosova, N., Bukartyk, N., Fihurka, N., Ostapiv, D., Samaryk, V., Pasetto, P., & Varvarenko, S. (2023). Gelatin-based hydrogel with antiseptic properties: Synthesis and properties. Applied Nanoscience, 13(12), 7611–7623. https://doi.org/10.1007/s13204-023-02956-6
dc.relation.references12. Pertsev I. M., Piminov O. F., Slobodianiuk M. M. ta in (2007). Farmatsevtychni ta medykobiolohichni aspekty likiv, Nova Knyha.
dc.relation.references13. Gul, K., Gan, R.-Y., Sun, C.-X., Jiao, G., Wu, D.-T., Li, H.-B., Kenaan, A., Corke, H., & Fang, Y.-P.(2022). Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels. Critical Reviews in Food Science and Nutrition, 62(14), 3817–3832. https://doi.org/10.1080/10408398.2020.1870034
dc.relation.references14. Qureshi, D., Nayak, S. K., Maji, S., Kim, D., Banerjee, I., & Pal, K. (2019). Carrageenan: A wonder polymer from marine algae for potential drug delivery applications. Current Pharmaceutical Design, 25(11), 1172–1186.https://doi.org/10.2174/1381612825666190425190754
dc.relation.references15. Smistad, G., Bøyum, S., Alund, S. J., Samuelsen, A. B. C., & Hiorth, M. (2012). The potential of pectin as a stabilizer for liposomal drug delivery systems. Carbohydrate Polymers, 90(3), 1337–1344.https://doi.org/10.1016/j.carbpol.2012.07.002
dc.relation.references16. Benson, H. A. E., Grice, J. E., Mohammed, Y., Namjoshi, S., & Roberts, M. S. (2019). Topical and transdermal drug delivery: From simple potions to smart technologies. Current Drug Delivery, 16(5), 444–460.https://doi.org/10.2174/1567201816666190201143457
dc.relation.references17. Ruela, A. L. M., Perissinato, A. G., Lino, M. E. D. S., Mudrik, P. S., & Pereira, G. R. (2016). Evaluation of skin absorption of drugs from topical and transdermal formulations. Brazilian Journal of Pharmaceutical Sciences, 52(3), 527–544. https://doi.org/10.1590/s1984-82502016000300018
dc.relation.references18. Ahsan, A., Tian, W.-X., Farooq, M. A., & Khan, D. H. (2021). An overview of hydrogels and their role in transdermal drug delivery. International Journal of Polymeric Materials and Polymeric Biomaterials,70(8), 574–584. https://doi.org/10.1080/00914037.2020.1740989
dc.relation.references19. Vigata, M., Meinert, C., Hutmacher, D. W.,& Bock, N. (2020). Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics, 12(12), 1188.https://doi.org/10.3390/pharmaceutics12121188
dc.relation.references20. Hoare, T. R., & Kohane, D. S. (2008). Hydrogels in drug delivery: Progress and challenges. Polymer, 49(8), 1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027
dc.relation.references21. Samchenko, Y., Ulberg, Z., & Korotych, O.(2011). Multipurpose smart hydrogel systems. Advances in Colloid and Interface Science, 168(1–2), 247–262.https://doi.org/10.1016/j.cis.2011.06.005
dc.relation.references22. Seong, D.-Y., & Kim, Y.-J. (2015). Enhanced photodynamic therapy efficacy of methylene blue-loaded calcium phosphate nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 146, 34–43. https://doi.org/10.1016/j.jphotobiol.2015.02.022
dc.relation.references23. Li, S., Dong, S., Xu, W., Tu, S., Yan, L., Zhao, C., Ding, J., & Chen, X. (2018). Antibacterial hydrogels. Advanced Science, 5(5), 1700527. https://doi.org/10.1002/advs.201700527
dc.relation.references24. Dolynskyi, H. A., Samchenko, Yu. M., Pasmurtseva, N. A., Poltoratskaia, T. P., Ulberh, Z. R., Kyslukhyna, M. A., & Hamaleia, N. F. (2015). Fotobakterytsydni vlastyvosti termochutlyvoho hidrohelevoho nanokompozytu z metylenovym synim. Fotobiolohiia ta fotomedytsyna, 12(3, 4), 86–91. vylucheno iz https:// periodicals.karazin.ua/photomedicine/article/view/4618
dc.relation.references25. Arif, T. (2015). Salicylic acid as a peeling agent: A comprehensive review. Clinical, Cosmetic and Investigational Dermatology, 455. https://doi.org/10.2147/CCID.S84765
dc.relation.references26. Rhein, L., Chaudhuri, B., Jivani, N., Fares, H., & Davis, A. (2004). Targeted delivery of salicylic acid from acne treatment products into and through skin: Role of solution and ingredient properties and relationships to irritation. Journal of Cosmetic Science, 55(1), 65–80
dc.relation.referencesen1. Bruck, S. D. (1998). Book review: Electrically assisted transdermal and topical drug delivery, by ajay k. Banga. Critical Reviews in Therapeutic Drug Carrier Systems, 15(6), 2. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v15.i6.40
dc.relation.referencesen2. Vasylev A. E., Krasniuk Y. Y., Ravykumar S.(2001). Transdermalnye terapevtycheskye systemy dostavky lekarstvennykh veshchestv. Khymykofarmatsevtycheskyi zhurnal, 11(35), 29–42
dc.relation.referencesen3. Samchenko, Yu. M., Pasmurtseva, N. A., & Ulberh, Z. R. (2007). Dyffuzyia lekarstvennykh preparatov yz hydrohelevykh nanoreaktorov. Dopovidi Natsionalnoi akademii nauk Ukrainy, 6, 143.
dc.relation.referencesen4. Kiyozumi, T., Kanatani, Y., Ishihara, M., Saitoh, D., Shimizu, J., Yura, H., Suzuki, S., Okada, Y., & Kikuchi, M. (2006). Medium (Dmem/f12) containing chitosan hydrogel as adhesive and dressing in autologous skin grafts and accelerator in the healing process. Journal of Biomedical Materials Research Part B: Applied Biomaterials,79B(1), 129–136. https://doi.org/10.1002/jbm.b.30522
dc.relation.referencesen5. Larrañeta, E., Stewart, S., Ervine, M., Al- Kasasbeh, R., & Donnelly, R. (2018). Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications. Journal of Functional Biomaterials, 9(1),13. https://doi.org/10.3390/jfb9010013
dc.relation.referencesen6. McKenzie, M., Betts, D., Suh, A., Bui, K., Kim, L., & Cho, H. (2015). Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules,20(11), 20397–20408. https://doi.org/10.3390/molecules201119705
dc.relation.referencesen7. Gu, D., O’Connor, A. J., G. H. Qiao, G., & Ladewig, K. (2017). Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opinion on Drug Delivery, 14(7), 879–895. https://doi.org/10.1080/17425247.2017.1245290
dc.relation.referencesen8. Yang, Z., Nie, S., Hsiao, W. W., & Pam, W.(2011). Thermoreversible Pluronic® F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: In vitro drug release, cell cytotoxicity, and uptake studies. International Journal of Nanomedicine,151. https://doi.org/10.2147/IJN.S15057
dc.relation.referencesen9. Donnelly, R. F. (2012). Microneedlemediated transdermal and intradermal drug delivery. Wiley-Blackwell.
dc.relation.referencesen10. Rezvanian, M., Ahmad, N., Mohd Amin, M. C. I., & Ng, S.-F. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. International Journal of Biological Macromolecules, 97,131–140. https://doi.org/10.1016/j.ijbiomac.2016.12.079
dc.relation.referencesen11. Maikovych, O., Nosova, N., Bukartyk, N., Fihurka, N., Ostapiv, D., Samaryk, V., Pasetto, P., & Varvarenko, S. (2023). Gelatin-based hydrogel with antiseptic properties: Synthesis and properties. Applied Nanoscience, 13(12), 7611–7623. https://doi.org/10.1007/s13204-023-02956-6
dc.relation.referencesen12. Pertsev I. M., Piminov O. F., Slobodianiuk M. M. ta in (2007). Farmatsevtychni ta medykobiolohichni aspekty likiv, Nova Knyha.
dc.relation.referencesen13. Gul, K., Gan, R.-Y., Sun, C.-X., Jiao, G., Wu, D.-T., Li, H.-B., Kenaan, A., Corke, H., & Fang, Y.-P.(2022). Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels. Critical Reviews in Food Science and Nutrition, 62(14), 3817–3832. https://doi.org/10.1080/10408398.2020.1870034
dc.relation.referencesen14. Qureshi, D., Nayak, S. K., Maji, S., Kim, D., Banerjee, I., & Pal, K. (2019). Carrageenan: A wonder polymer from marine algae for potential drug delivery applications. Current Pharmaceutical Design, 25(11), 1172–1186.https://doi.org/10.2174/1381612825666190425190754
dc.relation.referencesen15. Smistad, G., Bøyum, S., Alund, S. J., Samuelsen, A. B. C., & Hiorth, M. (2012). The potential of pectin as a stabilizer for liposomal drug delivery systems. Carbohydrate Polymers, 90(3), 1337–1344.https://doi.org/10.1016/j.carbpol.2012.07.002
dc.relation.referencesen16. Benson, H. A. E., Grice, J. E., Mohammed, Y., Namjoshi, S., & Roberts, M. S. (2019). Topical and transdermal drug delivery: From simple potions to smart technologies. Current Drug Delivery, 16(5), 444–460.https://doi.org/10.2174/1567201816666190201143457
dc.relation.referencesen17. Ruela, A. L. M., Perissinato, A. G., Lino, M. E. D. S., Mudrik, P. S., & Pereira, G. R. (2016). Evaluation of skin absorption of drugs from topical and transdermal formulations. Brazilian Journal of Pharmaceutical Sciences, 52(3), 527–544. https://doi.org/10.1590/s1984-82502016000300018
dc.relation.referencesen18. Ahsan, A., Tian, W.-X., Farooq, M. A., & Khan, D. H. (2021). An overview of hydrogels and their role in transdermal drug delivery. International Journal of Polymeric Materials and Polymeric Biomaterials,70(8), 574–584. https://doi.org/10.1080/00914037.2020.1740989
dc.relation.referencesen19. Vigata, M., Meinert, C., Hutmacher, D. W.,& Bock, N. (2020). Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics, 12(12), 1188.https://doi.org/10.3390/pharmaceutics12121188
dc.relation.referencesen20. Hoare, T. R., & Kohane, D. S. (2008). Hydrogels in drug delivery: Progress and challenges. Polymer, 49(8), 1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027
dc.relation.referencesen21. Samchenko, Y., Ulberg, Z., & Korotych, O.(2011). Multipurpose smart hydrogel systems. Advances in Colloid and Interface Science, 168(1–2), 247–262.https://doi.org/10.1016/j.cis.2011.06.005
dc.relation.referencesen22. Seong, D.-Y., & Kim, Y.-J. (2015). Enhanced photodynamic therapy efficacy of methylene blue-loaded calcium phosphate nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 146, 34–43. https://doi.org/10.1016/j.jphotobiol.2015.02.022
dc.relation.referencesen23. Li, S., Dong, S., Xu, W., Tu, S., Yan, L., Zhao, C., Ding, J., & Chen, X. (2018). Antibacterial hydrogels. Advanced Science, 5(5), 1700527. https://doi.org/10.1002/advs.201700527
dc.relation.referencesen24. Dolynskyi, H. A., Samchenko, Yu. M., Pasmurtseva, N. A., Poltoratskaia, T. P., Ulberh, Z. R., Kyslukhyna, M. A., & Hamaleia, N. F. (2015). Fotobakterytsydni vlastyvosti termochutlyvoho hidrohelevoho nanokompozytu z metylenovym synim. Fotobiolohiia ta fotomedytsyna, 12(3, 4), 86–91. vylucheno iz https:// periodicals.karazin.ua/photomedicine/article/view/4618
dc.relation.referencesen25. Arif, T. (2015). Salicylic acid as a peeling agent: A comprehensive review. Clinical, Cosmetic and Investigational Dermatology, 455. https://doi.org/10.2147/CCID.S84765
dc.relation.referencesen26. Rhein, L., Chaudhuri, B., Jivani, N., Fares, H., & Davis, A. (2004). Targeted delivery of salicylic acid from acne treatment products into and through skin: Role of solution and ingredient properties and relationships to irritation. Journal of Cosmetic Science, 55(1), 65–80
dc.relation.urihttps://doi.org/10.1615/CritRevTherDrugCarrierSyst.v15.i6.40
dc.relation.urihttps://doi.org/10.1002/jbm.b.30522
dc.relation.urihttps://doi.org/10.3390/jfb9010013
dc.relation.urihttps://doi.org/10.3390/molecules201119705
dc.relation.urihttps://doi.org/10.1080/17425247.2017.1245290
dc.relation.urihttps://doi.org/10.2147/IJN.S15057
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2016.12.079
dc.relation.urihttps://doi.org/10.1007/s13204-023-02956-6
dc.relation.urihttps://doi.org/10.1080/10408398.2020.1870034
dc.relation.urihttps://doi.org/10.2174/1381612825666190425190754
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2012.07.002
dc.relation.urihttps://doi.org/10.2174/1567201816666190201143457
dc.relation.urihttps://doi.org/10.1590/s1984-82502016000300018
dc.relation.urihttps://doi.org/10.1080/00914037.2020.1740989
dc.relation.urihttps://doi.org/10.3390/pharmaceutics12121188
dc.relation.urihttps://doi.org/10.1016/j.polymer.2008.01.027
dc.relation.urihttps://doi.org/10.1016/j.cis.2011.06.005
dc.relation.urihttps://doi.org/10.1016/j.jphotobiol.2015.02.022
dc.relation.urihttps://doi.org/10.1002/advs.201700527
dc.relation.urihttps://doi.org/10.2147/CCID.S84765
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.subjectструктурування
dc.subjectжелатин
dc.subjectальгінат натрію
dc.subjectнабрякання у модельних середовищах
dc.subjectвивільнення ліків
dc.subjectstructuring
dc.subjectgelatin
dc.subjectsodium alginate
dc.subjectswelling in model media
dc.subjectdrug release
dc.titleHydrogels based on natural polymers structured with propylene glycol diepoxide for drug delivery
dc.title.alternativeГідрогелі на основі природних полімерів, структурованих діепоксидом пропіленгліколю для доставки ліків
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v7n2_Hnyp_A_V-Hydrogels_based_on_natural_176-183.pdf
Size:
466.16 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.94 KB
Format:
Plain Text
Description: