Роль бізнес-аналітики в епоху великих даних: нові можливості для ух-валення управлінських рішень
| dc.citation.epage | 165 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Менеджмент та підприємництво в Україні: етапи становлення і проблеми розвитку | |
| dc.citation.spage | 152 | |
| dc.citation.volume | 6 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний університет харчових технологій | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | National University of Food Technologies | |
| dc.contributor.author | Двуліт, З. П. | |
| dc.contributor.author | Мазник, Л. В. | |
| dc.contributor.author | Dvulit, Z. P. | |
| dc.contributor.author | Maznyk, L. V. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-12-04T07:42:15Z | |
| dc.date.created | 2024-12-20 | |
| dc.date.issued | 2024-12-20 | |
| dc.description.abstract | Ця стаття присвячена дослідженню ролі бізнес-аналітики в епоху великих даних (Big Data) та її впливу на прийняття рішень у сучасних організаціях. Проаналізовано ос- новні тенденції використання великих даних у бізнес-середовищі, зокрема розвиток штуч- ного інтелекту, машинного навчання, предиктивної аналітики та реальночасового опрацю- вання даних. Автори досліджують переваги використання аналітики великих даних, які полягають у персоналізації клієнтських пропозицій, покращенні управлінських процесів та підвищенні конкурентоспроможності організацій. Окремо висвітлюються виклики, пов’язані з інтеграцією великих даних у бізнес-процеси, зокрема питання безпеки, конфі- денційності та етики використання даних. Стаття також акцентує увагу на перспек-тив- них напрямках подальших досліджень у сфері аналітики великих даних. | |
| dc.description.abstract | This article delves into the pivotal role that business analytics plays in the era of Big Data, focusing on how it transforms decision-making processes in contemporary organizations. Big Data analytics has become an essential tool for businesses striving to gain a competitive edge in an increasingly data-driven world. The research outlines the main trends in the application of Big Data technologies, such as the integration of artificial intelligence (AI) and machine learning (ML), predictive analytics, and real-time data processing. These technologies enable organizations to process large datasets more efficiently, uncover hidden patterns, and make data-informed decisions with greater precision. The authors discuss the key benefits of adopting Big Data analytics, particularly in areas like customer behaviour personalization, enhanced risk management, and optimization of business operations. By leveraging predictive analytics, companies can forecast trends, mitigate risks, and tailor products and services to meet customer demands. Additionally, the article highlights the growing importance of realtime analytics, allowing organizations to respond promptly to market changes and operational challenges. However, the article also emphasizes the challenges businesses face when integrating Big Data analytics into their operations. Issues related to data security, privacy, and ethics are becoming increasingly critical, particularly with the expansion of data collection from various sources. The paper suggests that for organizations to succeed in the Big Data era, they must address these ethical concerns and ensure transparency and responsibility in data usage. Moreover, the role of skilled data scientists and analysts is underscored as a crucial factor in the effective implementation of analytics tools. The article concludes by identifying potential directions for future research, particularly in improving data quality and addressing the ethical implications of Big Data usage in sectors like healthcare and finance, where sensitive personal information is often involved. Further investigation into how organizations can better manage the balance between data-driven insights and privacy concerns is recommended. Overall, the research highlights how business analytics, supported by Big Data, offers new opportunities for informed decision-making, operational efficiency, and competitive advantage in the modern business landscape. | |
| dc.format.extent | 152-165 | |
| dc.format.pages | 14 | |
| dc.identifier.citation | Двуліт З. П. Роль бізнес-аналітики в епоху великих даних: нові можливості для ух-валення управлінських рішень / З. П. Двуліт, Л. В. Мазник // Менеджмент та підприємництво в Україні: етапи становлення і проблеми розвитку. — Львів : Видавництво Львівської політехніки, 2024. — Том 6. — № 2. — С. 152–165. | |
| dc.identifier.citation2015 | Двуліт З. П., Мазник Л. В. Роль бізнес-аналітики в епоху великих даних: нові можливості для ух-валення управлінських рішень // Менеджмент та підприємництво в Україні: етапи становлення і проблеми розвитку, Львів. 2024. Том 6. № 2. С. 152–165. | |
| dc.identifier.citationenAPA | Dvulit, Z. P., & Maznyk, L. V. (2024). Rol biznes-analityky v epokhu velykykh danykh: novi mozhlyvosti dlia ukh-valennia upravlinskykh rishen [The role of business analytics in the era of Big Data: new opportunities for managerial decision-making]. Management and Entrepreneurship in Ukraine: the Stages of Formation and Problems of Development, 6(2), 152-165. Lviv Politechnic Publishing House. [in Ukrainian]. | |
| dc.identifier.citationenCHICAGO | Dvulit Z. P., Maznyk L. V. (2024) Rol biznes-analityky v epokhu velykykh danykh: novi mozhlyvosti dlia ukh-valennia upravlinskykh rishen [The role of business analytics in the era of Big Data: new opportunities for managerial decision-making]. Management and Entrepreneurship in Ukraine: the Stages of Formation and Problems of Development (Lviv), vol. 6, no 2, pp. 152-165 [in Ukrainian]. | |
| dc.identifier.doi | https://doi.org/10.23939/smeu2024.02.152 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/123743 | |
| dc.language.iso | uk | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Менеджмент та підприємництво в Україні: етапи становлення і проблеми розвитку, 2 (6), 2024 | |
| dc.relation.ispartof | Management and Entrepreneurship in Ukraine: the Stages of Formation and Problems of Development, 2 (6), 2024 | |
| dc.relation.references | 1. Bokman, А., Fiedler, L., Perrey, J., & Pickersgill, A. (2024). Five facts: How customer analytics boosts corporate performance. URL: https://www.mckinsey.com/capabilities/growth-marketing-and-sales/our-insights/five-factshow- customer-analytics-boosts-corporate-performance. | |
| dc.relation.references | 2. Henke, N., Bughin, J., Chui, M., Manyika, J., Saleh, T., Wiseman, B., & Sethupathy, G. (2016). The age of analytics: competing in a data-driven world. URL: https://www.mckinsey.com/capabilities/quantumblack/our-insights/ the-age-of-analytics-competing-in-a-data-driven-world. | |
| dc.relation.references | 3. Standing out on LinkedIn as a data scientist. URL: https://www.tealhq.com/linkedin-guides/data-scientist. | |
| dc.relation.references | 4. LinkedIn names data science & AI as in-demand jobs for 2021. (2021) URL: https://opendatascience. com/linkedin-names-data-science-ai-as-in-demand-jobs-for-2021/. | |
| dc.relation.references | 5. Arruda, D., Madhavji, N. (2017). The role of Big Data analytics in corporate decision-making, 28–37. DOIL: https://doi.org/10.5220/0006402300280037. | |
| dc.relation.references | 6. Ayuningtyas, A., Mokodenseho, S., Aziz, A., Nugraheny, D., & Retnowati, N. (2023). Big Data analysis and its utilization for business decision-making. West Science Information System and Technology. DOI: https://doi.org/10.58812/wsist.v1i01.177. | |
| dc.relation.references | 7. Neves, P., Bernardino, J. (2021). The role of Big Data and business analytics in decision making. DOI: https://doi.org/10.4018/978-1-7998-5849-2.ch010. | |
| dc.relation.references | 8. Sahoo, S. (2021). Big data analytics in manufacturing: a bibliometric analysis of research in the field of business management. International Journal of Production Research, 60, 6793–6821. DOI: https://doi.org/10.1080/00207543.2021.1919333. | |
| dc.relation.references | 9. Goar,V., Yadav, N. (2022). Business decision making by big data analytics. International journal on recent and innovation trends in computing and communication. DOI: https://doi.org/10.17762/ijritcc.v10i5.5550. | |
| dc.relation.references | 10. Dong, X. (2023). The advantages and challenges faced by business analytics in the context of big data. Advances in economics, management, and political sciences. DOI: https://doi.org/10.54254/2754-1169/49/20230494. | |
| dc.relation.references | 11. Mittelstadt, B., Floridi, L. (2015). The ethics of big data: current and foreseeable issues in biomedical contexts. Science and Engineering Ethics, 22, 303–341. DOI: https://doi.org/10.1007/s11948-015-9652-2. | |
| dc.relation.references | 12. Liang, T., Guo, X., Shen, K. (2018). Big data analytics for business intelligence. Expert systems with applications,111, 1–11. DOI: https://doi.org/10.1016/j.eswa.2018.05.034. | |
| dc.relation.references | 13. Awan, U., Shamim, S., Khan, Z., Zia, N., Shariq, S., Khan, M. (2021). Big data analytics capability and decisionmaking: the role of data-driven insight on circular economy performance. Technological Forecasting and Social Change. DOI: https://doi.org/10.1016/J.TECHFORE.2021.120766. | |
| dc.relation.references | 14. Al-Sai, Z., Husin, M., Syed-Mohamad, S., Abdin, R., Damer, N., Abualigah, L., & Gandomi, A. (2022). Explore big data analytics applications and opportunities: a review. Big data and cognitive computing, 6(4), 157. DOI: https://doi.org/10.3390/bdcc6040157. | |
| dc.relation.references | 15. Akter, S., Bandara, R., Hani, U., Wamba, S., Foropon, C., & Papadopoulos, T. (2019). Analytics-based decisionmaking for service systems: a qualitative study and agenda for future research. International Journal of Information Management, 48, 85–95. DOI: https://doi.org/10.1016/J.IJINFOMGT.2019.01.020. | |
| dc.relation.references | 16. Elgendy, N., Elragal, A. (2016). Big Data analytics in support of the decision-making process. Procedia computer science, 100, 1071–1084. DOI: https://doi.org/10.1016/J.PROCS.2016.09.251. | |
| dc.relation.references | 17. Liebowitz, J. (2016). Big data and business analytics. DOI: https://doi.org/10.1201/b14700. | |
| dc.relation.references | 18. Sousa, M., Pesqueira, A., Lemos, C., Sousa, M., & Rocha, A. (2019). Decision-making based on big data analytics for people management in healthcare organizations. Journal of Medical Systems, 43. DOI: https://doi.org/10.1007/s10916-019-1419-x. | |
| dc.relation.references | 19. Ferraris, A., Mazzoleni, A., Devalle, A., & Couturier, J. (2019). Big data analytics capabilities and knowledge management: impact on firm performance. Management decision. DOI: https://doi.org/10.1108/MD-07-2018-0825. | |
| dc.relation.references | 20. Maheshwari, S., Gautam, P., & Jaggi, C. (2020). Role of big data analytics in supply chain management: current trends and future perspectives. International Journal of Production Research, 59, 1875–1900 DOI: https://doi.org/10.1080/00207543.2020.1793011. | |
| dc.relation.references | 21. Cheryshenko, M., Pomernyuk, Y. (2021). Integration of big data in the decision-making process in the real estate sector. IOP conference series: Earth and environmental science, 751. DOI: https://doi.org/10.1088/1755-1315/751/1/012096. | |
| dc.relation.references | 22. Sedkaoui, S. (2018). How data analytics is changing entrepreneurial opportunities. International Journal of Innovation Science, 10, 274–294. DOI: https://doi.org/10.1108/IJIS-09-2017-0092. | |
| dc.relation.references | 23. Shah, T. (2022). Big data analytics in higher education. Research Anthology on Big Data Analytics Architectures and Applications. DOI: https://doi.org/10.4018/978-1-5225-3616-1.CH003. | |
| dc.relation.references | 24. Janiesch, C., Dinter, B., Mikalef, P., & Tona, O. (2022). Business analytics and big data research in information systems. Journal of Business Analytics, 5, 1–7. DOI: https://doi.org/10.1080/2573234X.2022.2069426. | |
| dc.relation.references | 25. Saggi, M., Jain, S. (2018). A survey towards an integration of big data analytics to big insights for value-creation. Information Processing & Management, 54, 758–790. DOI: https://doi.org/10.1016/j.ipm.2018.01.010. | |
| dc.relation.references | 26. GDPR. URL: https://gdpr-text.com/uk/. | |
| dc.relation.references | 27. Assurance lab. URL: https://www.assurancelab.cpa/resources/post/soc2-introduction. | |
| dc.relation.references | 28. Willis, B., Jai, T. (Catherine). (2020). Do U.S. consumers want more power over their personal data? A preliminary study on consumer data right preferences: an abstract, 467–468. DOI: https://doi.org/10.1007/978-3-030-39165-2_192. | |
| dc.relation.references | 29. Bubakr, H., Baber, C. (2020). Using the toulmin model of argumentation to explore the differences in human and automated hiring decisions, 211–216. DOI: https://doi.org/10.5220/0009129102110216. | |
| dc.relation.references | 30. Wolters, P. (2021). The territorial effect of the right to be forgotten after Google v CNIL. International Journal of Law and Information Technology, 29, 57–75. DOI: https://doi.org/10.1093/ijlit/eaaa022. | |
| dc.relation.references | 31. Gwebu, K., Wang, J., & Wang, L. (2018). The role of corporate reputation and crisis response strategies in data breach management. Journal of Management Information Systems, 35, 683–714. DOI: https://doi.org/10.1080/07421222.2018.1451962. | |
| dc.relation.references | 32. Javeed, U. (2021). Data and competition law: introducing data as non-monetary consideration and competition concerns in data-driven online platforms. EngRN: Computer Engineering (Topic). DOI: https://doi.org/10.2139/ ssrn.3788178. | |
| dc.relation.references | 33. Sadok, H., Sakka, F., & Maknouzi, M. (2022). Artificial intelligence and bank credit analysis: a review. Cogent Economics & Finance, 10. URL: https://doi.org/10.1080/23322039.2021.2023262. | |
| dc.relation.references | 34. Chorzempa, M., Triolo, P., & Sacks, S. (2018). China’s social credit system: a mark of progress or a threat to privacy? Policy briefs. | |
| dc.relation.references | 35. Singh, M., Ghutla, B., Jnr, R., Mohammed, A., & Rashid, M. (2017). Walmart’s sales data analysis – a big data analytics perspective. 2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), 114–119. DOI: https://doi.org/10.1109/APWCONCSE.2017.00028. | |
| dc.relation.references | 36. Milosavljevic, I. (2023). Netflix Recommends: Algorithms, Film Choice, and the History of Taste. Media Studies and Applied Ethics. DOI: https://doi.org/10.46630/msae.2.2023.07. | |
| dc.relation.references | 37. Hong, J., Cruz, I., & Williams, D. (2021). AI, you can drive my car: how we evaluate human drivers vs. selfdriving cars. Computers in Human Behavior, 125, 106944. DOI: https://doi.org/10.1016/J.CHB.2021.106944. | |
| dc.relation.referencesen | 1. Bokman, A., Fiedler, L., Perrey, J., & Pickersgill, A. (2024). Five facts: How customer analytics boosts corporate performance. URL: https://www.mckinsey.com/capabilities/growth-marketing-and-sales/our-insights/five-factshow- customer-analytics-boosts-corporate-performance. | |
| dc.relation.referencesen | 2. Henke, N., Bughin, J., Chui, M., Manyika, J., Saleh, T., Wiseman, B., & Sethupathy, G. (2016). The age of analytics: competing in a data-driven world. URL: https://www.mckinsey.com/capabilities/quantumblack/our-insights/ the-age-of-analytics-competing-in-a-data-driven-world. | |
| dc.relation.referencesen | 3. Standing out on LinkedIn as a data scientist. URL: https://www.tealhq.com/linkedin-guides/data-scientist. | |
| dc.relation.referencesen | 4. LinkedIn names data science & AI as in-demand jobs for 2021. (2021) URL: https://opendatascience. com/linkedin-names-data-science-ai-as-in-demand-jobs-for-2021/. | |
| dc.relation.referencesen | 5. Arruda, D., Madhavji, N. (2017). The role of Big Data analytics in corporate decision-making, 28–37. DOIL: https://doi.org/10.5220/0006402300280037. | |
| dc.relation.referencesen | 6. Ayuningtyas, A., Mokodenseho, S., Aziz, A., Nugraheny, D., & Retnowati, N. (2023). Big Data analysis and its utilization for business decision-making. West Science Information System and Technology. DOI: https://doi.org/10.58812/wsist.v1i01.177. | |
| dc.relation.referencesen | 7. Neves, P., Bernardino, J. (2021). The role of Big Data and business analytics in decision making. DOI: https://doi.org/10.4018/978-1-7998-5849-2.ch010. | |
| dc.relation.referencesen | 8. Sahoo, S. (2021). Big data analytics in manufacturing: a bibliometric analysis of research in the field of business management. International Journal of Production Research, 60, 6793–6821. DOI: https://doi.org/10.1080/00207543.2021.1919333. | |
| dc.relation.referencesen | 9. Goar,V., Yadav, N. (2022). Business decision making by big data analytics. International journal on recent and innovation trends in computing and communication. DOI: https://doi.org/10.17762/ijritcc.v10i5.5550. | |
| dc.relation.referencesen | 10. Dong, X. (2023). The advantages and challenges faced by business analytics in the context of big data. Advances in economics, management, and political sciences. DOI: https://doi.org/10.54254/2754-1169/49/20230494. | |
| dc.relation.referencesen | 11. Mittelstadt, B., Floridi, L. (2015). The ethics of big data: current and foreseeable issues in biomedical contexts. Science and Engineering Ethics, 22, 303–341. DOI: https://doi.org/10.1007/s11948-015-9652-2. | |
| dc.relation.referencesen | 12. Liang, T., Guo, X., Shen, K. (2018). Big data analytics for business intelligence. Expert systems with applications,111, 1–11. DOI: https://doi.org/10.1016/j.eswa.2018.05.034. | |
| dc.relation.referencesen | 13. Awan, U., Shamim, S., Khan, Z., Zia, N., Shariq, S., Khan, M. (2021). Big data analytics capability and decisionmaking: the role of data-driven insight on circular economy performance. Technological Forecasting and Social Change. DOI: https://doi.org/10.1016/J.TECHFORE.2021.120766. | |
| dc.relation.referencesen | 14. Al-Sai, Z., Husin, M., Syed-Mohamad, S., Abdin, R., Damer, N., Abualigah, L., & Gandomi, A. (2022). Explore big data analytics applications and opportunities: a review. Big data and cognitive computing, 6(4), 157. DOI: https://doi.org/10.3390/bdcc6040157. | |
| dc.relation.referencesen | 15. Akter, S., Bandara, R., Hani, U., Wamba, S., Foropon, C., & Papadopoulos, T. (2019). Analytics-based decisionmaking for service systems: a qualitative study and agenda for future research. International Journal of Information Management, 48, 85–95. DOI: https://doi.org/10.1016/J.IJINFOMGT.2019.01.020. | |
| dc.relation.referencesen | 16. Elgendy, N., Elragal, A. (2016). Big Data analytics in support of the decision-making process. Procedia computer science, 100, 1071–1084. DOI: https://doi.org/10.1016/J.PROCS.2016.09.251. | |
| dc.relation.referencesen | 17. Liebowitz, J. (2016). Big data and business analytics. DOI: https://doi.org/10.1201/b14700. | |
| dc.relation.referencesen | 18. Sousa, M., Pesqueira, A., Lemos, C., Sousa, M., & Rocha, A. (2019). Decision-making based on big data analytics for people management in healthcare organizations. Journal of Medical Systems, 43. DOI: https://doi.org/10.1007/s10916-019-1419-x. | |
| dc.relation.referencesen | 19. Ferraris, A., Mazzoleni, A., Devalle, A., & Couturier, J. (2019). Big data analytics capabilities and knowledge management: impact on firm performance. Management decision. DOI: https://doi.org/10.1108/MD-07-2018-0825. | |
| dc.relation.referencesen | 20. Maheshwari, S., Gautam, P., & Jaggi, C. (2020). Role of big data analytics in supply chain management: current trends and future perspectives. International Journal of Production Research, 59, 1875–1900 DOI: https://doi.org/10.1080/00207543.2020.1793011. | |
| dc.relation.referencesen | 21. Cheryshenko, M., Pomernyuk, Y. (2021). Integration of big data in the decision-making process in the real estate sector. IOP conference series: Earth and environmental science, 751. DOI: https://doi.org/10.1088/1755-1315/751/1/012096. | |
| dc.relation.referencesen | 22. Sedkaoui, S. (2018). How data analytics is changing entrepreneurial opportunities. International Journal of Innovation Science, 10, 274–294. DOI: https://doi.org/10.1108/IJIS-09-2017-0092. | |
| dc.relation.referencesen | 23. Shah, T. (2022). Big data analytics in higher education. Research Anthology on Big Data Analytics Architectures and Applications. DOI: https://doi.org/10.4018/978-1-5225-3616-1.CH003. | |
| dc.relation.referencesen | 24. Janiesch, C., Dinter, B., Mikalef, P., & Tona, O. (2022). Business analytics and big data research in information systems. Journal of Business Analytics, 5, 1–7. DOI: https://doi.org/10.1080/2573234X.2022.2069426. | |
| dc.relation.referencesen | 25. Saggi, M., Jain, S. (2018). A survey towards an integration of big data analytics to big insights for value-creation. Information Processing & Management, 54, 758–790. DOI: https://doi.org/10.1016/j.ipm.2018.01.010. | |
| dc.relation.referencesen | 26. GDPR. URL: https://gdpr-text.com/uk/. | |
| dc.relation.referencesen | 27. Assurance lab. URL: https://www.assurancelab.cpa/resources/post/soc2-introduction. | |
| dc.relation.referencesen | 28. Willis, B., Jai, T. (Catherine). (2020). Do U.S. consumers want more power over their personal data? A preliminary study on consumer data right preferences: an abstract, 467–468. DOI: https://doi.org/10.1007/978-3-030-39165-2_192. | |
| dc.relation.referencesen | 29. Bubakr, H., Baber, C. (2020). Using the toulmin model of argumentation to explore the differences in human and automated hiring decisions, 211–216. DOI: https://doi.org/10.5220/0009129102110216. | |
| dc.relation.referencesen | 30. Wolters, P. (2021). The territorial effect of the right to be forgotten after Google v CNIL. International Journal of Law and Information Technology, 29, 57–75. DOI: https://doi.org/10.1093/ijlit/eaaa022. | |
| dc.relation.referencesen | 31. Gwebu, K., Wang, J., & Wang, L. (2018). The role of corporate reputation and crisis response strategies in data breach management. Journal of Management Information Systems, 35, 683–714. DOI: https://doi.org/10.1080/07421222.2018.1451962. | |
| dc.relation.referencesen | 32. Javeed, U. (2021). Data and competition law: introducing data as non-monetary consideration and competition concerns in data-driven online platforms. EngRN: Computer Engineering (Topic). DOI: https://doi.org/10.2139/ ssrn.3788178. | |
| dc.relation.referencesen | 33. Sadok, H., Sakka, F., & Maknouzi, M. (2022). Artificial intelligence and bank credit analysis: a review. Cogent Economics & Finance, 10. URL: https://doi.org/10.1080/23322039.2021.2023262. | |
| dc.relation.referencesen | 34. Chorzempa, M., Triolo, P., & Sacks, S. (2018). China’s social credit system: a mark of progress or a threat to privacy? Policy briefs. | |
| dc.relation.referencesen | 35. Singh, M., Ghutla, B., Jnr, R., Mohammed, A., & Rashid, M. (2017). Walmart’s sales data analysis – a big data analytics perspective. 2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), 114–119. DOI: https://doi.org/10.1109/APWCONCSE.2017.00028. | |
| dc.relation.referencesen | 36. Milosavljevic, I. (2023). Netflix Recommends: Algorithms, Film Choice, and the History of Taste. Media Studies and Applied Ethics. DOI: https://doi.org/10.46630/msae.2.2023.07. | |
| dc.relation.referencesen | 37. Hong, J., Cruz, I., & Williams, D. (2021). AI, you can drive my car: how we evaluate human drivers vs. selfdriving cars. Computers in Human Behavior, 125, 106944. DOI: https://doi.org/10.1016/J.CHB.2021.106944. | |
| dc.relation.uri | https://www.mckinsey.com/capabilities/growth-marketing-and-sales/our-insights/five-factshow- | |
| dc.relation.uri | https://www.mckinsey.com/capabilities/quantumblack/our-insights/ | |
| dc.relation.uri | https://www.tealhq.com/linkedin-guides/data-scientist | |
| dc.relation.uri | https://opendatascience | |
| dc.relation.uri | https://doi.org/10.5220/0006402300280037 | |
| dc.relation.uri | https://doi.org/10.58812/wsist.v1i01.177 | |
| dc.relation.uri | https://doi.org/10.4018/978-1-7998-5849-2.ch010 | |
| dc.relation.uri | https://doi.org/10.1080/00207543.2021.1919333 | |
| dc.relation.uri | https://doi.org/10.17762/ijritcc.v10i5.5550 | |
| dc.relation.uri | https://doi.org/10.54254/2754-1169/49/20230494 | |
| dc.relation.uri | https://doi.org/10.1007/s11948-015-9652-2 | |
| dc.relation.uri | https://doi.org/10.1016/j.eswa.2018.05.034 | |
| dc.relation.uri | https://doi.org/10.1016/J.TECHFORE.2021.120766 | |
| dc.relation.uri | https://doi.org/10.3390/bdcc6040157 | |
| dc.relation.uri | https://doi.org/10.1016/J.IJINFOMGT.2019.01.020 | |
| dc.relation.uri | https://doi.org/10.1016/J.PROCS.2016.09.251 | |
| dc.relation.uri | https://doi.org/10.1201/b14700 | |
| dc.relation.uri | https://doi.org/10.1007/s10916-019-1419-x | |
| dc.relation.uri | https://doi.org/10.1108/MD-07-2018-0825 | |
| dc.relation.uri | https://doi.org/10.1080/00207543.2020.1793011 | |
| dc.relation.uri | https://doi.org/10.1088/1755-1315/751/1/012096 | |
| dc.relation.uri | https://doi.org/10.1108/IJIS-09-2017-0092 | |
| dc.relation.uri | https://doi.org/10.4018/978-1-5225-3616-1.CH003 | |
| dc.relation.uri | https://doi.org/10.1080/2573234X.2022.2069426 | |
| dc.relation.uri | https://doi.org/10.1016/j.ipm.2018.01.010 | |
| dc.relation.uri | https://gdpr-text.com/uk/ | |
| dc.relation.uri | https://www.assurancelab.cpa/resources/post/soc2-introduction | |
| dc.relation.uri | https://doi.org/10.1007/978-3-030-39165-2_192 | |
| dc.relation.uri | https://doi.org/10.5220/0009129102110216 | |
| dc.relation.uri | https://doi.org/10.1093/ijlit/eaaa022 | |
| dc.relation.uri | https://doi.org/10.1080/07421222.2018.1451962 | |
| dc.relation.uri | https://doi.org/10.2139/ | |
| dc.relation.uri | https://doi.org/10.1080/23322039.2021.2023262 | |
| dc.relation.uri | https://doi.org/10.1109/APWCONCSE.2017.00028 | |
| dc.relation.uri | https://doi.org/10.46630/msae.2.2023.07 | |
| dc.relation.uri | https://doi.org/10.1016/J.CHB.2021.106944 | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2024 | |
| dc.rights.holder | © Двуліт З. П., Мазник Л. В., 2024 | |
| dc.subject | аналітика великих даних | |
| dc.subject | інтеграція | |
| dc.subject | бізнес-аналітика | |
| dc.subject | прийняття рішень | |
| dc.subject | предиктивна аналітика | |
| dc.subject | етика даних | |
| dc.subject | питання конфіденційності | |
| dc.subject | безпека даних | |
| dc.subject | бізнес-операції | |
| dc.subject | Big Data analytics | |
| dc.subject | integration | |
| dc.subject | business analytics | |
| dc.subject | decision-making | |
| dc.subject | predictive analytics | |
| dc.subject | data ethics | |
| dc.subject | privacy concerns | |
| dc.subject | data security | |
| dc.subject | business operations | |
| dc.subject.udc | 004.65 | |
| dc.subject.udc | 005.5 | |
| dc.title | Роль бізнес-аналітики в епоху великих даних: нові можливості для ух-валення управлінських рішень | |
| dc.title.alternative | The role of business analytics in the era of Big Data: new opportunities for managerial decision-making | |
| dc.type | Article |