Enhancement of medical MRI images based on fractal operators
| dc.citation.epage | 145 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Комп’ютерні системи проектування. Теорія і практика | |
| dc.citation.spage | 130 | |
| dc.citation.volume | 6 | |
| dc.contributor.affiliation | Національний лісотехнічний університет України | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | National Forestry University of Ukraine | |
| dc.contributor.affiliation | Lviv Polutechnic National University | |
| dc.contributor.author | Березюк, Володимир | |
| dc.contributor.author | Соколовський, Ярослав | |
| dc.contributor.author | Bereziuk, Volodymyr | |
| dc.contributor.author | Sokolovskyy, Yaroslav | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-12-15T08:11:10Z | |
| dc.date.created | 2024-08-10 | |
| dc.date.issued | 2024-08-10 | |
| dc.description.abstract | У статті досліджено алгоритми покращення текстур на медичних зображеннях. Медичні МРТ знімки мозку містять великі ділянки із низьким рівнем сірого кольору, що дають важливу інформацію для лікарів. Покращення текстури дає змогу виділити великі сірі області на зображеннях для подальшого детального розпізнавання. На основі дослідження наявних методів покращення текстур визначено, що саме фрактальні оператори є ефективними для опрацювання медичних зображень. Наведено математичний апарат фрактальних операторів на основі рівняння апроксимації фрактальних похідних Грюнвальда – Лєтнікова. На підставі цього рівняння описано створення фрактальних диференційних масок та алгоритму застосування цих масок для покращення зображень. Здійснено дослідження похибки апроксимації похідної Грюнвальда – Лєтнікова порівняно з аналітичним значенням похідної Грюнвальда – Лєтнікова. Алгоритм на основі фрактальної похідної забезпечив покращення таких параметрів зображення, як: контраст, кореляція, енергія та гомогенність порівняно із параметрами оригінального зображення. Також наведено порівняння результатів алгоритму на основі фрактального диференціала з іншими алгоритмами для покращення текстури зображень. Зроблено висновок, що фрактальний диференціальний алгоритм добре підходить для завдань покращення МРТ зображень, на відміну від інших алгоритмів, як за візуальним порівнянням, так і за числовими показниками, а отже, може бути застосований для вирішення реальних завдань. | |
| dc.description.abstract | This article presents the research of texture enhancement algorithms on medical images. Medical MRI brain scans contain large areas with low level grey colors that carry useful information for doctors. Texture improvement allow to highlight large grey areas on images for future detailed recognition. Based on the study of existing texture enhancement methods, it was determined that fractal operators are effective for processing medical images. The mathematical framework of fractal operators is presented based on the approximation equation of the Grünwald- Letnikov fractional derivatives. The creation of fractal differential masks and the algorithm of masks usage for image enhancement are described based on this equation. The approximation error of the Grunwald-Letnikov derivative is calculated in comparison with the analytical value of the Grunwald- Letnikov derivative. The algorithm based on the fractal derivative shows improvements in image parameters such as contrast, correlation, energy, and homogeneity compared to the original image parameters. A comparison of the results of the algorithm based on the fractal differential with other algorithms for improving the texture of images is also given. It is concluded that the fractal differential algorithm is well-suited for MRI image enhancement tasks, unlike other algorithms, both in visual comparisons and numerical metrics, and thus can be applied to solve real-world problems. | |
| dc.format.extent | 130-145 | |
| dc.format.pages | 16 | |
| dc.identifier.citation | Bereziuk V. Enhancement of medical MRI images based on fractal operators / Volodymyr Bereziuk, Yaroslav Sokolovskyy // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 130–145. | |
| dc.identifier.citation2015 | Bereziuk V., Sokolovskyy Y. Enhancement of medical MRI images based on fractal operators // Computer Systems of Design. Theory and Practice, Lviv. 2024. Vol 6. No 2. P. 130–145. | |
| dc.identifier.citationenAPA | Bereziuk, V., & Sokolovskyy, Y. (2024). Enhancement of medical MRI images based on fractal operators. Computer Systems of Design. Theory and Practice, 6(2), 130-145. Lviv Politechnic Publishing House.. | |
| dc.identifier.citationenCHICAGO | Bereziuk V., Sokolovskyy Y. (2024) Enhancement of medical MRI images based on fractal operators. Computer Systems of Design. Theory and Practice (Lviv), vol. 6, no 2, pp. 130-145. | |
| dc.identifier.doi | https://doi.org/10.23939/cds2024.02.130 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/124048 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Комп’ютерні системи проектування. Теорія і практика, 2 (6), 2024 | |
| dc.relation.ispartof | Computer Systems of Design. Theory and Practice, 2 (6), 2024 | |
| dc.relation.references | [1] McRobbie, D. W., Moore, E. A., Graves, M. J., Prince, M. R. MRI from Picture to Proton. 2nd ed. Cambridge University Press, 2007. | |
| dc.relation.references | [2] Sobel, Irwin & Feldman, Gary. (1973). A 3×3 isotropic gradient operator for image processing. Pattern Classification and Scene Analysis, 271–272. | |
| dc.relation.references | [3] Prewitt, J. M. S. “Object Enhancement and Extraction”. In Picture Processing and Psychopictorics, edited by B. S. Lipkin and A. Rosenfeld, 75–149. New York: Academic Press, 1970. | |
| dc.relation.references | [4] Marr, D., and E. Hildreth. “Theory of Edge Detection”. Proceedings of the Royal Society of London. Series B, Biological Sciences 207, No. 1167 (1980): 187–217. | |
| dc.relation.references | [5] Y. -F. Pu, J. -L. Zhou and X. Yuan, “Fractional Differential Mask: A Fractional Differential-Based Approach for Multiscale Texture Enhancement”, in IEEE Transactions on Image Processing, Vol. 19, No. 2, pp. 491–511, Feb. 2010. DOI: 10.1109/TIP.2009.2035980. | |
| dc.relation.references | [6] Van Rossum, G., and F. L. Drake Jr. Python Reference Manual. PythonLabs, 2001. | |
| dc.relation.references | [7] Virtanen, P., R. Gommers, T. E. Oliphant, et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”. Nature Methods, 17, 261–272 (2020). DOI: 10.1038/s41592-019-0686-2 | |
| dc.relation.references | [8] Bradski, G. “The OpenCV Library”. Dr. Dobb’s Journal of Software Tools, 2000. | |
| dc.relation.references | [9] R. E. Twogood and F. G. Sommer, “Digital Image Processing”, in IEEE Transactions on Nuclear Science, Vol. 29, No. 3, pp. 1075–1086, June 1982, DOI: 10.1109/TNS.1982.4336327. | |
| dc.relation.references | [10] https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection/data | |
| dc.relation.references | [11] Haralick, R. M., Shanmugam, K., and Dinstein, I. “Textural Features for Image Classification”. IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3, No. 6, 1973, pp. 610–621. | |
| dc.relation.references | [12] Greenspan, H., Anderson, C. H., and Akber, S. “Image enhancement by nonlinear extrapolation in frequency space”. IEEE Transactions on Image Processing, Vol. 9, No. 6, pp. 1035–1048, Jun. 2000. | |
| dc.relation.references | [13] Dippel, S., Stahl, M., Wiemker, R., and Blaffert, T. “Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform”. IEEE Transactions on Medical Imaging, Vol. 21, No. 4, pp. 343–353, Apr. 2002. | |
| dc.relation.references | [14] Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal,27(3), 379–423, 623–656. | |
| dc.relation.references | [15] Paris, S., Hasler, D., and Morel, J. M. “A Fast Algorithm for the Computation of the Exact Euclidean Distance Transform”. IEEE Transactions on Image Processing, Vol. 21, No. 1, pp. 22–30, Jan. 2012. | |
| dc.relation.references | [16] Manokhin D., Sokolovskyy Ya., “Intracranial Hemorrhage Segmentation Using Neural Network and Riesz Fractional Order Derivative-based Texture Enhancement”, Computer Design Systems. Theory and Practice,2024; Vol. 6, Number 1:1–16, https://doi.org/10.23939/cds2024.01.001 | |
| dc.relation.references | [17] Massopust, Peter (1997). Fractal Functions and their Applications. Chaos Solitons & Fractals, 8, 171–190. 10.1016/S0960-0779(96)00047-1. | |
| dc.relation.referencesen | [1] McRobbie, D. W., Moore, E. A., Graves, M. J., Prince, M. R. MRI from Picture to Proton. 2nd ed. Cambridge University Press, 2007. | |
| dc.relation.referencesen | [2] Sobel, Irwin & Feldman, Gary. (1973). A 3×3 isotropic gradient operator for image processing. Pattern Classification and Scene Analysis, 271–272. | |
| dc.relation.referencesen | [3] Prewitt, J. M. S. "Object Enhancement and Extraction". In Picture Processing and Psychopictorics, edited by B. S. Lipkin and A. Rosenfeld, 75–149. New York: Academic Press, 1970. | |
| dc.relation.referencesen | [4] Marr, D., and E. Hildreth. "Theory of Edge Detection". Proceedings of the Royal Society of London. Series B, Biological Sciences 207, No. 1167 (1980): 187–217. | |
| dc.relation.referencesen | [5] Y. -F. Pu, J. -L. Zhou and X. Yuan, "Fractional Differential Mask: A Fractional Differential-Based Approach for Multiscale Texture Enhancement", in IEEE Transactions on Image Processing, Vol. 19, No. 2, pp. 491–511, Feb. 2010. DOI: 10.1109/TIP.2009.2035980. | |
| dc.relation.referencesen | [6] Van Rossum, G., and F. L. Drake Jr. Python Reference Manual. PythonLabs, 2001. | |
| dc.relation.referencesen | [7] Virtanen, P., R. Gommers, T. E. Oliphant, et al. "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python". Nature Methods, 17, 261–272 (2020). DOI: 10.1038/s41592-019-0686-2 | |
| dc.relation.referencesen | [8] Bradski, G. "The OpenCV Library". Dr. Dobb’s Journal of Software Tools, 2000. | |
| dc.relation.referencesen | [9] R. E. Twogood and F. G. Sommer, "Digital Image Processing", in IEEE Transactions on Nuclear Science, Vol. 29, No. 3, pp. 1075–1086, June 1982, DOI: 10.1109/TNS.1982.4336327. | |
| dc.relation.referencesen | [10] https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection/data | |
| dc.relation.referencesen | [11] Haralick, R. M., Shanmugam, K., and Dinstein, I. "Textural Features for Image Classification". IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3, No. 6, 1973, pp. 610–621. | |
| dc.relation.referencesen | [12] Greenspan, H., Anderson, C. H., and Akber, S. "Image enhancement by nonlinear extrapolation in frequency space". IEEE Transactions on Image Processing, Vol. 9, No. 6, pp. 1035–1048, Jun. 2000. | |
| dc.relation.referencesen | [13] Dippel, S., Stahl, M., Wiemker, R., and Blaffert, T. "Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform". IEEE Transactions on Medical Imaging, Vol. 21, No. 4, pp. 343–353, Apr. 2002. | |
| dc.relation.referencesen | [14] Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal,27(3), 379–423, 623–656. | |
| dc.relation.referencesen | [15] Paris, S., Hasler, D., and Morel, J. M. "A Fast Algorithm for the Computation of the Exact Euclidean Distance Transform". IEEE Transactions on Image Processing, Vol. 21, No. 1, pp. 22–30, Jan. 2012. | |
| dc.relation.referencesen | [16] Manokhin D., Sokolovskyy Ya., "Intracranial Hemorrhage Segmentation Using Neural Network and Riesz Fractional Order Derivative-based Texture Enhancement", Computer Design Systems. Theory and Practice,2024; Vol. 6, Number 1:1–16, https://doi.org/10.23939/cds2024.01.001 | |
| dc.relation.referencesen | [17] Massopust, Peter (1997). Fractal Functions and their Applications. Chaos Solitons & Fractals, 8, 171–190. 10.1016/S0960-0779(96)00047-1. | |
| dc.relation.uri | https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection/data | |
| dc.relation.uri | https://doi.org/10.23939/cds2024.01.001 | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2024 | |
| dc.rights.holder | © Bereziuk V., Sokolovskyy Ya., 2024 | |
| dc.subject | медичні зображення | |
| dc.subject | магнітно-резонансна томографія (МРТ) | |
| dc.subject | фрактальні оператори | |
| dc.subject | алгоритми | |
| dc.subject | Python | |
| dc.subject | покращення зображень | |
| dc.subject | Medical images | |
| dc.subject | Magnetic Resonance Imaging (MRI) | |
| dc.subject | fractal operators | |
| dc.subject | algorithms | |
| dc.subject | Python | |
| dc.subject | image enhancement | |
| dc.title | Enhancement of medical MRI images based on fractal operators | |
| dc.title.alternative | Покращення медичних МРТ зображень на підставі фрактальних операторів | |
| dc.type | Article |