Effects of the yttria content and sintering temperature on the phase evolution in yttria-stabilized zirconia
dc.citation.epage | 19 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Український журнал із машинобудування і матеріалознавства | |
dc.citation.spage | 12 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Vavrukh, Valentyna | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-09-15T06:22:11Z | |
dc.date.available | 2023-09-15T06:22:11Z | |
dc.date.created | 2022-02-22 | |
dc.date.issued | 2022-02-22 | |
dc.description.abstract | The microstructure of YSZ ceramics stabilized by the various amount of yttria, namely 3 mol % Y2O3 (3YSZ), 4 mol% Y2O3 (4YSZ) and 5 mol % Y2O3 (5YSZ) has been studied. Three sintering temperatures, namely 1450 °C, 1500 °C and 1550 °C were used for each series of samples (3YSZ, 4YSZ, 5YSZ). The total area of the monoclinic and cubic zirconia phases in the microstructure of ceramics and the regularities of distribution of these phases were determined by ImageJ. Peculiarities of changes in volume percentage of the monoclinic and cubic phases with an increase in sintering temperature of ceramics were found. Quantitative analysis of these phases was carried out. The total distribution of the monoclinic and cubic phases by ranges of their areas was presented. Correlations between the yttria content, the sintering temperature and changes in the microstructure and phase balance of the studied ceramics were found. | |
dc.format.extent | 12-19 | |
dc.format.pages | 8 | |
dc.identifier.citation | Vavrukh V. Effects of the yttria content and sintering temperature on the phase evolution in yttria-stabilized zirconia / Valentyna Vavrukh // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 8. — No 1. — P. 12–19. | |
dc.identifier.citationen | Vavrukh V. Effects of the yttria content and sintering temperature on the phase evolution in yttria-stabilized zirconia / Valentyna Vavrukh // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 8. — No 1. — P. 12–19. | |
dc.identifier.doi | doi.org/10.23939/ujmems2022.01.012 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60077 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Український журнал із машинобудування і матеріалознавства, 1 (8), 2022 | |
dc.relation.ispartof | Ukrainian Journal of Mechanical Engineering and Materials Science, 1 (8), 2022 | |
dc.relation.references | [1] Sh. Jiang, X. Huang, Zh. He, A. Buyers, “Phase transformation and lattice parameter changes of nontrivalent rare earth-doped YSZ as a function of temperature”, Journal of Materials Engineering and Performance, vol. 27, pp. 2263–2270, 2018. https://doi.org/10.1007/s11665-018-3159-3. | |
dc.relation.references | [2] T. A. Schaedler, R. M. Leckie, S. Kra¨mer, A. G. Evans, C. G. Levi, “Toughening of nontransformable t’- YSZ by addition of titania”, Journal of the American Ceramic Society, vol. 90, no. 12, pp. 3896–3901, 2007. | |
dc.relation.references | [3] M. Zhao, W. Pan, Ch. Wan, Zh. Qu, Zh. Li, J. Yang, “Defect engineering in development of low thermal conductivity materials: A review”, Journal of the European Ceramic Society, vol. 37, no. 1, pp. 1–13, 2016. https://doi.org/10.1016/j.jeurceramsoc.2016.07.036. | |
dc.relation.references | [4] Y. Du, Zh. Jin, P. Huang, “Thermodynamic assessment of the ZrO2-YO1,5 system”, Journal of the American Ceramic Society, vol. 74, no. 7, pp. 1569–1577, 1991. https://doi.org/10.1111/j.1151-2916.1991.tb07142.x. | |
dc.relation.references | [5] C. Baudín, P. Pena, “The main role of the ZrO2–MgO–CaO and ZrO2–MgO–CaO–SiO2 systems in the field of refractories”, Boletín de la Sociedad Española de Cerámica y Vidrio, 2021. https://doi.org/10.1016/j.bsecv.2021.09.009. | |
dc.relation.references | [6] B. Vasyliv, J. Milewski, V. Podhurska, T. Wejrzanowski, V. Kulyk, J. Skibiński, V. Vira, Ł. Szabłowski, A. Szczęśniak, O. Dybiński, “Study of the degradation of a fine-grained YSZ–NiO anode material during reduction in hydrogen and reoxidation in air”, Applied Nanoscience, vol. 12, pp. 965–975, 2022. https://doi.org/10.1007/s13204-021-01768-w. | |
dc.relation.references | [7] V. V. Kulyk, B. D. Vasyliv, Z. A. Duriagina, T. M. Kovbasiuk, I. A. Lemishka, “The effect of water vapor containing hydrogenous atmospheres on the microstructure and tendency to brittle fracture of anode materials of YSZ–NiO (Ni) system”, Archives of Materials Science and Engineering, vol. 108, no. 2, pp. 49–67, 2021. https://doi.org/10.5604/01.3001.0015.0254. | |
dc.relation.references | [8] B. Vasyliv, V. Kulyk, Z. Duriagina, D. Mierzwinski, T. Kovbasiuk, T. Tepla, “Estimation of the effect of redox treatment on microstructure and tendency to brittle fracture of anode materials of YSZ–NiO (Ni) system”, Eastern-European Journal of Enterprise Technologies, vol. 6, no. 12(108), pp. 61–71, 2020. | |
dc.relation.references | [9] A. J. Santos, S. Garcia-Segura, S. Dosta, I. G. Cano, C. A. Martínez-Huitle, E. Brillas, “A ceramic electrode of ZrO2-Y2O3 for the generation of oxidant species in anodic oxidation. Assessment of the treatment of Acid Blue 29 dye in sulfate and chloride media”, Separation and Purification Technology, vol. 228, pp. 115747, 2019. https://doi.org/10.1016/j.seppur.2019.115747. | |
dc.relation.references | [10] Y. Yan, Z. Ma, J. Sun, M. Bu, Y. Huo, Z. Wang, Y. Li, N. Hu, “Surface microstructure-controlled ZrO2 for highly sensitive room-temperature NO2 sensors”, Nano Materials Science, vol. 3, no. 3, pp. 268–275, 2021. | |
dc.relation.references | [11] D. Kunying, Ch. Taotao, H. Zhiyong, “Formation and properties of porous ZrO2-8wt%Y2O3 coatings”, Rare Metal Materials and Engineering, vol. 47, no. 6, pp. 1677–1681, 2018. https://doi.org/10.1016/S1875-5372(18)30149-8. | |
dc.relation.references | [12] B. Istrate, J. V. Rau, C. Munteanu, I. V. Antoniac, V. Saceleanu, “Properties and in vitro assessment of ZrO2-based coatings obtained by atmospheric plasma jet spraying on biodegradable Mg-Ca and Mg-Ca-Zr alloys”, Ceramics International, vol. 46, no. 10, part B, pp. 15897–15906, 2020. | |
dc.relation.references | [13] F. Zarone, M.I. Mauro, G. Spagnuolo, E. Gherlone, R. Sorrentino, “Fourteen-year evaluation of posterior zirconia-based three-unit fixed dental prostheses: A prospective clinical study of all ceramic prosthesis”, Journal of Dentistry, vol. 101, pp. 103419, 2020. https://doi.org/10.1016/j.jdent.2020.103419. | |
dc.relation.references | [14] N. Antolino, C. Muhlstein, G. Hayes, J. Adair, R. Bermejo, “Strength limits in mesoscaled 3Y-TZP ceramics for micro-surgical instruments”, Journal of the Mechanical Behavior of Biomedical Materials, vol. 91, pp. 99–108, 2019. https://doi.org/10.1016/j.jmbbm.2018.12.001. | |
dc.relation.references | [15] Ch. Li, F. Ai, X. Miao, H. Liao, F. Li, M. Liu, F. Yu, L. Dong, T. Li, X. Wang, “The return of ceramic implants”: Rose stem inspired dual layered modification of ceramic scaffolds with improved mechanical and antiinfective properties”, Materials Science & Engineering C, vol. 93, pp. 873–879, 2018. | |
dc.relation.references | [16] Ch. Liu, A. Eser, Th. Albrecht, V. Stournari, M. Felder, S. Heintze, Ch. Broeckmann, “Strength characterization and lifetime prediction ofdental ceramic materials”, Dental Materials, vol. 37, no. 1, pp. 94–105, 2021. https://doi.org/10.1016/j.dental.2020.10.015. | |
dc.relation.references | [17] C. Santos, I. F. Coutinho, J. E. Amarante, M. F. Alves, M. M. Coutinho, C. R. Silva, “Mechanical properties of ceramic composites based on ZrO2 co-stabilized by Y2O3–CeO2 reinforced with Al2O3 platelets for dental implants”, Journal of the Mechanical Behavior of Biomedical Materials, vol. 116, pp. 104372, 2021. | |
dc.relation.references | [18] Ch. Zhang, Zh. Jiang, L. Zhao, W. Guo, X. Gao, “Stability, rheological behaviors, and curing properties of 3Y–ZrO2 and 3Y–ZrO2/GO ceramic suspensions in stereolithography applied for dental implants”, Ceramics International, vol. 47, pp. 13344–13350, 2021. https://doi.org/10.1016/j.ceramint.2021.01.191. | |
dc.relation.references | [19] L. Hallmann, P. Ulmer, E. Reusser, M. Louvel, Ch.H.F. Hämmerle, “Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP-zirconia”, Journal of the European Ceramic Society, vol. 32, pp. 4091–4104, 2012. https://doi.org/10.1016/j.jeurceramsoc.2012.07.032. | |
dc.relation.references | [20] T. K. Gupta, F. F. Lange, J. H. Bechtold, “Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase”, Journal of Materials Science, vol. 13, pp. 1464–1470, 1978. https://doi.org/10.1007/BF00553200. | |
dc.relation.references | [21] V. V. Kulyk, Z. A. Duriagina, B. D. Vasyliv, V. I. Vavrukh, P. Ya. Lyutyy, T. M. Kovbasiuk, M. Ya. Holovchuk, “Effects of Yttria content and sintering temperature on the microstructure and tendency to brittle fracture of yttria-stabilized Zirconia“, Archives of Materials Science and Engineering, vol. 109, no. 2, pp. 65–79, 2021. | |
dc.relation.references | [22] K. Wojteczko, Z. Pedzich, D. Zientara, K. Berent, K. Haberko, “Phenomena occurring upon the sintering of a mixture of yttria-zirconia nanometric powder and sub-micrometric pure zirconia powder”, Materials, vol. 14, pp. 6937, 2021., https://doi.org/10.3390/ma14226937 | |
dc.relation.references | [23] L. Ting, Ch. Weidong, J. Hongmin, Y. Shufang, M. Wen, “Characterization of YSZ ceramic nanopowders synthesized at different temperatures via polyacrylamide gel method”, Journal of Wuhan University of TechnologyMater. Sci. Ed., vol. 35, no. 3, 2020. https://doi.org/10.1007/s11595-020-2289-2. | |
dc.relation.references | [24] W. Pabst, J. Havrda, E. Gregorová, B. Krčmová, “Alumina toughened zirconia made by room temperature extrusion of ceramic pastes”, Ceramics – Silikáty, vol. 44, no. 2, pp. 41–47, 2000. | |
dc.relation.references | [25] G. Chen, Y. Ling, Q. Li, H. Zheng, K. Li, Q. Jiang, J. Chen, M. Omran, L. Gao, “Crystal structure and thermomechanical properties of CaO-PSZ ceramics synthesised from fused ZrO2”, Ceramics International, vol. 46, pp. 15357–15363, 2020. https://doi.org/10.1016/j.ceramint.2020.03.079. | |
dc.relation.references | [26] J. A. B. Chaparro, A. R. Rojas, M. H. B. Bernal, A. A. Elguezabal, J. Echeberria, “Elucidating of the microstructure of ZrO2 ceramics with additions of 1200°C heat treated ultrafine MgO powders: aging at 1420 °C”, Materials Chemistry and Physics, vol. 106, pp. 45–53, 2007. | |
dc.relation.references | [27] M. Y. Smyrnova-Zamkova, O. V. Dudnik, O. I. Bykov, O. K. Ruban, O. I Khomenko, “Changes in the properties of ultrafine Al2O3–ZrO2–Y2O3–CeO2 powders after heat treatment in the range 400–1450 °C”, Powder Metallurgy and Metal Ceramics, vol. 60, pp. 519–530, 2022. | |
dc.relation.references | [28] M. Y. Smyrnova-Zamkova, O. K. Ruban, O. I. Bykov, O. V. Dudnik, “Physico-chemical properties of fine-grained powder in Al2O3-ZrO2 -Y2O3-CeO2 system produced by combined method”, Composites Theory and Practice, vol. 18, no. 4, pp. 234–240, 2018. https://doi.org/10.18524/2304-0947.2018.4(68).147820. | |
dc.relation.references | [29] M. Alfano, G. Di Girolamo, L. Pagnotta, D. Sun, “Processing, microstructure and mechanical properties of air plasma-sprayed ceria–yttria co-stabilized zirconia coatings”, Strain, vol. 46, no. 5 (2), pp. 409–418, 2010. | |
dc.relation.references | [30] G. D. Girolamo, C. Blasi, M. Schioppa, L. Tapfer, “Structure and thermal properties of heat treated plasma sprayed ceria–yttria co-stabilized zirconia coatings”, Ceramics International, vol. 36, no. 3, pp. 961–968, 2010. | |
dc.relation.references | [31] Y. Komatsu, A. Sciazko, N. Shikazono, “Isostatic pressing of screen printed nickel-gadolinium doped ceria anodes on electrolyte-supported solid oxide fuel cells”, Journal of Power Sources, vol. 485, pp. 229317, 2021. https://doi.org/10.1016/j.jpowsour.2020.229317. | |
dc.relation.references | [32] B. Vasyliv, “Improvement of the electric conductivity of the material of anode in a fuel cell by the cyclic redox thermal treatment”, Materials Science, vol. 46, no. 2, pp. 260–264, 2010. | |
dc.relation.references | [33] I. Danilenko, G. Lasko, I. Brykhanova, V. Burkhovetski, L. Ahkhozov, “The peculiarities of structure formation and properties of zirconia-based nanocomposites with addition of Al2O3 and NiO”, Nanoscale Research Letters, vol. 12, no. 125, 2017. https://doi.org/10.1186/s11671-017-1901-7. | |
dc.relation.referencesen | [1] Sh. Jiang, X. Huang, Zh. He, A. Buyers, "Phase transformation and lattice parameter changes of nontrivalent rare earth-doped YSZ as a function of temperature", Journal of Materials Engineering and Performance, vol. 27, pp. 2263–2270, 2018. https://doi.org/10.1007/s11665-018-3159-3. | |
dc.relation.referencesen | [2] T. A. Schaedler, R. M. Leckie, S. Kra¨mer, A. G. Evans, C. G. Levi, "Toughening of nontransformable t’- YSZ by addition of titania", Journal of the American Ceramic Society, vol. 90, no. 12, pp. 3896–3901, 2007. | |
dc.relation.referencesen | [3] M. Zhao, W. Pan, Ch. Wan, Zh. Qu, Zh. Li, J. Yang, "Defect engineering in development of low thermal conductivity materials: A review", Journal of the European Ceramic Society, vol. 37, no. 1, pp. 1–13, 2016. https://doi.org/10.1016/j.jeurceramsoc.2016.07.036. | |
dc.relation.referencesen | [4] Y. Du, Zh. Jin, P. Huang, "Thermodynamic assessment of the ZrO2-YO1,5 system", Journal of the American Ceramic Society, vol. 74, no. 7, pp. 1569–1577, 1991. https://doi.org/10.1111/j.1151-2916.1991.tb07142.x. | |
dc.relation.referencesen | [5] C. Baudín, P. Pena, "The main role of the ZrO2–MgO–CaO and ZrO2–MgO–CaO–SiO2 systems in the field of refractories", Boletín de la Sociedad Española de Cerámica y Vidrio, 2021. https://doi.org/10.1016/j.bsecv.2021.09.009. | |
dc.relation.referencesen | [6] B. Vasyliv, J. Milewski, V. Podhurska, T. Wejrzanowski, V. Kulyk, J. Skibiński, V. Vira, Ł. Szabłowski, A. Szczęśniak, O. Dybiński, "Study of the degradation of a fine-grained YSZ–NiO anode material during reduction in hydrogen and reoxidation in air", Applied Nanoscience, vol. 12, pp. 965–975, 2022. https://doi.org/10.1007/s13204-021-01768-w. | |
dc.relation.referencesen | [7] V. V. Kulyk, B. D. Vasyliv, Z. A. Duriagina, T. M. Kovbasiuk, I. A. Lemishka, "The effect of water vapor containing hydrogenous atmospheres on the microstructure and tendency to brittle fracture of anode materials of YSZ–NiO (Ni) system", Archives of Materials Science and Engineering, vol. 108, no. 2, pp. 49–67, 2021. https://doi.org/10.5604/01.3001.0015.0254. | |
dc.relation.referencesen | [8] B. Vasyliv, V. Kulyk, Z. Duriagina, D. Mierzwinski, T. Kovbasiuk, T. Tepla, "Estimation of the effect of redox treatment on microstructure and tendency to brittle fracture of anode materials of YSZ–NiO (Ni) system", Eastern-European Journal of Enterprise Technologies, vol. 6, no. 12(108), pp. 61–71, 2020. | |
dc.relation.referencesen | [9] A. J. Santos, S. Garcia-Segura, S. Dosta, I. G. Cano, C. A. Martínez-Huitle, E. Brillas, "A ceramic electrode of ZrO2-Y2O3 for the generation of oxidant species in anodic oxidation. Assessment of the treatment of Acid Blue 29 dye in sulfate and chloride media", Separation and Purification Technology, vol. 228, pp. 115747, 2019. https://doi.org/10.1016/j.seppur.2019.115747. | |
dc.relation.referencesen | [10] Y. Yan, Z. Ma, J. Sun, M. Bu, Y. Huo, Z. Wang, Y. Li, N. Hu, "Surface microstructure-controlled ZrO2 for highly sensitive room-temperature NO2 sensors", Nano Materials Science, vol. 3, no. 3, pp. 268–275, 2021. | |
dc.relation.referencesen | [11] D. Kunying, Ch. Taotao, H. Zhiyong, "Formation and properties of porous ZrO2-8wt%Y2O3 coatings", Rare Metal Materials and Engineering, vol. 47, no. 6, pp. 1677–1681, 2018. https://doi.org/10.1016/S1875-5372(18)30149-8. | |
dc.relation.referencesen | [12] B. Istrate, J. V. Rau, C. Munteanu, I. V. Antoniac, V. Saceleanu, "Properties and in vitro assessment of ZrO2-based coatings obtained by atmospheric plasma jet spraying on biodegradable Mg-Ca and Mg-Ca-Zr alloys", Ceramics International, vol. 46, no. 10, part B, pp. 15897–15906, 2020. | |
dc.relation.referencesen | [13] F. Zarone, M.I. Mauro, G. Spagnuolo, E. Gherlone, R. Sorrentino, "Fourteen-year evaluation of posterior zirconia-based three-unit fixed dental prostheses: A prospective clinical study of all ceramic prosthesis", Journal of Dentistry, vol. 101, pp. 103419, 2020. https://doi.org/10.1016/j.jdent.2020.103419. | |
dc.relation.referencesen | [14] N. Antolino, C. Muhlstein, G. Hayes, J. Adair, R. Bermejo, "Strength limits in mesoscaled 3Y-TZP ceramics for micro-surgical instruments", Journal of the Mechanical Behavior of Biomedical Materials, vol. 91, pp. 99–108, 2019. https://doi.org/10.1016/j.jmbbm.2018.12.001. | |
dc.relation.referencesen | [15] Ch. Li, F. Ai, X. Miao, H. Liao, F. Li, M. Liu, F. Yu, L. Dong, T. Li, X. Wang, "The return of ceramic implants": Rose stem inspired dual layered modification of ceramic scaffolds with improved mechanical and antiinfective properties", Materials Science & Engineering C, vol. 93, pp. 873–879, 2018. | |
dc.relation.referencesen | [16] Ch. Liu, A. Eser, Th. Albrecht, V. Stournari, M. Felder, S. Heintze, Ch. Broeckmann, "Strength characterization and lifetime prediction ofdental ceramic materials", Dental Materials, vol. 37, no. 1, pp. 94–105, 2021. https://doi.org/10.1016/j.dental.2020.10.015. | |
dc.relation.referencesen | [17] C. Santos, I. F. Coutinho, J. E. Amarante, M. F. Alves, M. M. Coutinho, C. R. Silva, "Mechanical properties of ceramic composites based on ZrO2 co-stabilized by Y2O3–CeO2 reinforced with Al2O3 platelets for dental implants", Journal of the Mechanical Behavior of Biomedical Materials, vol. 116, pp. 104372, 2021. | |
dc.relation.referencesen | [18] Ch. Zhang, Zh. Jiang, L. Zhao, W. Guo, X. Gao, "Stability, rheological behaviors, and curing properties of 3Y–ZrO2 and 3Y–ZrO2/GO ceramic suspensions in stereolithography applied for dental implants", Ceramics International, vol. 47, pp. 13344–13350, 2021. https://doi.org/10.1016/j.ceramint.2021.01.191. | |
dc.relation.referencesen | [19] L. Hallmann, P. Ulmer, E. Reusser, M. Louvel, Ch.H.F. Hämmerle, "Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP-zirconia", Journal of the European Ceramic Society, vol. 32, pp. 4091–4104, 2012. https://doi.org/10.1016/j.jeurceramsoc.2012.07.032. | |
dc.relation.referencesen | [20] T. K. Gupta, F. F. Lange, J. H. Bechtold, "Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase", Journal of Materials Science, vol. 13, pp. 1464–1470, 1978. https://doi.org/10.1007/BF00553200. | |
dc.relation.referencesen | [21] V. V. Kulyk, Z. A. Duriagina, B. D. Vasyliv, V. I. Vavrukh, P. Ya. Lyutyy, T. M. Kovbasiuk, M. Ya. Holovchuk, "Effects of Yttria content and sintering temperature on the microstructure and tendency to brittle fracture of yttria-stabilized Zirconia", Archives of Materials Science and Engineering, vol. 109, no. 2, pp. 65–79, 2021. | |
dc.relation.referencesen | [22] K. Wojteczko, Z. Pedzich, D. Zientara, K. Berent, K. Haberko, "Phenomena occurring upon the sintering of a mixture of yttria-zirconia nanometric powder and sub-micrometric pure zirconia powder", Materials, vol. 14, pp. 6937, 2021., https://doi.org/10.3390/ma14226937 | |
dc.relation.referencesen | [23] L. Ting, Ch. Weidong, J. Hongmin, Y. Shufang, M. Wen, "Characterization of YSZ ceramic nanopowders synthesized at different temperatures via polyacrylamide gel method", Journal of Wuhan University of TechnologyMater. Sci. Ed., vol. 35, no. 3, 2020. https://doi.org/10.1007/s11595-020-2289-2. | |
dc.relation.referencesen | [24] W. Pabst, J. Havrda, E. Gregorová, B. Krčmová, "Alumina toughened zirconia made by room temperature extrusion of ceramic pastes", Ceramics – Silikáty, vol. 44, no. 2, pp. 41–47, 2000. | |
dc.relation.referencesen | [25] G. Chen, Y. Ling, Q. Li, H. Zheng, K. Li, Q. Jiang, J. Chen, M. Omran, L. Gao, "Crystal structure and thermomechanical properties of CaO-PSZ ceramics synthesised from fused ZrO2", Ceramics International, vol. 46, pp. 15357–15363, 2020. https://doi.org/10.1016/j.ceramint.2020.03.079. | |
dc.relation.referencesen | [26] J. A. B. Chaparro, A. R. Rojas, M. H. B. Bernal, A. A. Elguezabal, J. Echeberria, "Elucidating of the microstructure of ZrO2 ceramics with additions of 1200°C heat treated ultrafine MgO powders: aging at 1420 °C", Materials Chemistry and Physics, vol. 106, pp. 45–53, 2007. | |
dc.relation.referencesen | [27] M. Y. Smyrnova-Zamkova, O. V. Dudnik, O. I. Bykov, O. K. Ruban, O. I Khomenko, "Changes in the properties of ultrafine Al2O3–ZrO2–Y2O3–CeO2 powders after heat treatment in the range 400–1450 °C", Powder Metallurgy and Metal Ceramics, vol. 60, pp. 519–530, 2022. | |
dc.relation.referencesen | [28] M. Y. Smyrnova-Zamkova, O. K. Ruban, O. I. Bykov, O. V. Dudnik, "Physico-chemical properties of fine-grained powder in Al2O3-ZrO2 -Y2O3-CeO2 system produced by combined method", Composites Theory and Practice, vol. 18, no. 4, pp. 234–240, 2018. https://doi.org/10.18524/2304-0947.2018.4(68).147820. | |
dc.relation.referencesen | [29] M. Alfano, G. Di Girolamo, L. Pagnotta, D. Sun, "Processing, microstructure and mechanical properties of air plasma-sprayed ceria–yttria co-stabilized zirconia coatings", Strain, vol. 46, no. 5 (2), pp. 409–418, 2010. | |
dc.relation.referencesen | [30] G. D. Girolamo, C. Blasi, M. Schioppa, L. Tapfer, "Structure and thermal properties of heat treated plasma sprayed ceria–yttria co-stabilized zirconia coatings", Ceramics International, vol. 36, no. 3, pp. 961–968, 2010. | |
dc.relation.referencesen | [31] Y. Komatsu, A. Sciazko, N. Shikazono, "Isostatic pressing of screen printed nickel-gadolinium doped ceria anodes on electrolyte-supported solid oxide fuel cells", Journal of Power Sources, vol. 485, pp. 229317, 2021. https://doi.org/10.1016/j.jpowsour.2020.229317. | |
dc.relation.referencesen | [32] B. Vasyliv, "Improvement of the electric conductivity of the material of anode in a fuel cell by the cyclic redox thermal treatment", Materials Science, vol. 46, no. 2, pp. 260–264, 2010. | |
dc.relation.referencesen | [33] I. Danilenko, G. Lasko, I. Brykhanova, V. Burkhovetski, L. Ahkhozov, "The peculiarities of structure formation and properties of zirconia-based nanocomposites with addition of Al2O3 and NiO", Nanoscale Research Letters, vol. 12, no. 125, 2017. https://doi.org/10.1186/s11671-017-1901-7. | |
dc.relation.uri | https://doi.org/10.1007/s11665-018-3159-3 | |
dc.relation.uri | https://doi.org/10.1016/j.jeurceramsoc.2016.07.036 | |
dc.relation.uri | https://doi.org/10.1111/j.1151-2916.1991.tb07142.x | |
dc.relation.uri | https://doi.org/10.1016/j.bsecv.2021.09.009 | |
dc.relation.uri | https://doi.org/10.1007/s13204-021-01768-w | |
dc.relation.uri | https://doi.org/10.5604/01.3001.0015.0254 | |
dc.relation.uri | https://doi.org/10.1016/j.seppur.2019.115747 | |
dc.relation.uri | https://doi.org/10.1016/S1875-5372(18)30149-8 | |
dc.relation.uri | https://doi.org/10.1016/j.jdent.2020.103419 | |
dc.relation.uri | https://doi.org/10.1016/j.jmbbm.2018.12.001 | |
dc.relation.uri | https://doi.org/10.1016/j.dental.2020.10.015 | |
dc.relation.uri | https://doi.org/10.1016/j.ceramint.2021.01.191 | |
dc.relation.uri | https://doi.org/10.1016/j.jeurceramsoc.2012.07.032 | |
dc.relation.uri | https://doi.org/10.1007/BF00553200 | |
dc.relation.uri | https://doi.org/10.3390/ma14226937 | |
dc.relation.uri | https://doi.org/10.1007/s11595-020-2289-2 | |
dc.relation.uri | https://doi.org/10.1016/j.ceramint.2020.03.079 | |
dc.relation.uri | https://doi.org/10.18524/2304-0947.2018.4(68).147820 | |
dc.relation.uri | https://doi.org/10.1016/j.jpowsour.2020.229317 | |
dc.relation.uri | https://doi.org/10.1186/s11671-017-1901-7 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.rights.holder | © Vavrukh V., 2022 | |
dc.subject | YSZ ceramics | |
dc.subject | microstructure | |
dc.subject | agglomerates of (cubic+monoclinic)-phases | |
dc.subject | sintering temperature | |
dc.title | Effects of the yttria content and sintering temperature on the phase evolution in yttria-stabilized zirconia | |
dc.type | Article |
Files
License bundle
1 - 1 of 1