Mathematical model of dynamics of vibrating systems working environments

dc.citation.epage50
dc.citation.issue1
dc.citation.journalTitleУкраїнський журнал із машинобудування і матеріалознавства
dc.citation.spage44
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorTopilnytskyy, Volodymyr
dc.contributor.authorKabanov, Kostiantyn
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-09-15T06:22:14Z
dc.date.available2023-09-15T06:22:14Z
dc.date.created2022-02-22
dc.date.issued2022-02-22
dc.description.abstractUsing the apparatus of the special periodic Ateb-functions in combination with the asymptotic methods of nonlinear mechanics, the nonlinear mathematical models of motion of working environment of the oscillation system, which dependences take into account resilient and viscid making tensions from descriptions of the deformation state of environment, her physical and mechanical properties and features of co-operation of environment with the oscillation system, are worked out. The nonlinear model for describing the dynamics of the working environment of oscillating systems is more flexible, because the nonlinearity index, which depends on the type of working load, significantly affects the results of the oscillating loading process. It allows us to take into account the type of load, and, accordingly, increase the level of adequacy of the constructed analytical model of the oscillatory process that needs to be investigated. Taking into account this model, the study of various processes in oscillating systems can be carried out, in particular in different modes of vibration processing.
dc.format.extent44-50
dc.format.pages7
dc.identifier.citationTopilnytskyy V. Mathematical model of dynamics of vibrating systems working environments / Volodymyr Topilnytskyy, Kostiantyn Kabanov // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 8. — No 1. — P. 44–50.
dc.identifier.citationenTopilnytskyy V. Mathematical model of dynamics of vibrating systems working environments / Volodymyr Topilnytskyy, Kostiantyn Kabanov // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 8. — No 1. — P. 44–50.
dc.identifier.doidoi.org/10.23939/ujmems2022.01.044
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60081
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал із машинобудування і матеріалознавства, 1 (8), 2022
dc.relation.ispartofUkrainian Journal of Mechanical Engineering and Materials Science, 1 (8), 2022
dc.relation.references[1] A. P. Subach, Dynamyka protsessov y mashyn ob’emnoi obrabotky., Ryha: Zynatne, 1991. [in Russian].
dc.relation.references[2] Ya. H. Panovko, Vnutrennee trenye pry kolebanyiakh upruhykh system. M.: Fyzmathyz, 1960. [in Russian].
dc.relation.references[3] V. V. Bolotyn, Dynamycheskaia ustoichyvost upruhykh system. M., Hostekhyzdat. 1956. [in Russian].
dc.relation.references[4] Z. A. Stotsko, V. H. Topilnytskyi, Ya. M. Kusyi, O. T. Velyka, Matematychna model opysu dynamiky tekhnolohichnykh seredovyshch neliniinykh mekhanichnykh system obroblennia ta transportuvannia, Avtomatyzatsiia vyrobnychykh protsesiv v mashynobuduvanni ta pryladobuduvanni. Mizhhaluzevyi zbirnyk naukovykh prats. 2011, vyp. 45, s. 122–128 [in Ukrainian].
dc.relation.references[5] B. I. Sokil, Periodychni Ateb-funktsii v doslidzhenni odnochastotnykh rozv‘iazkiv deiakykh khvylovykh rivnian. Pratsi naukovoho tovarystva im. Shevchenka. 1997. T.1. s. 588–592 [in Ukrainian].
dc.relation.references[6] Yu. A. Mytropolskyi, Metod usrednenyia v nelyneinoi mekhanyke. K.: Naukova dumka, 1971 [in Ukrainian]
dc.relation.references[7] B. I. Sokil, Pro odyn sposib pobudovy odnochastotnykh rozviazkiv dlia neliniinoho khvylovoho rivniannia. Ukr.mat.zhurn. 1994. no. 6. s. 782–785. [in Ukrainian].
dc.relation.referencesen[1] A. P. Subach, Dynamyka protsessov y mashyn ob’emnoi obrabotky., Ryha: Zynatne, 1991. [in Russian].
dc.relation.referencesen[2] Ya. H. Panovko, Vnutrennee trenye pry kolebanyiakh upruhykh system. M., Fyzmathyz, 1960. [in Russian].
dc.relation.referencesen[3] V. V. Bolotyn, Dynamycheskaia ustoichyvost upruhykh system. M., Hostekhyzdat. 1956. [in Russian].
dc.relation.referencesen[4] Z. A. Stotsko, V. H. Topilnytskyi, Ya. M. Kusyi, O. T. Velyka, Matematychna model opysu dynamiky tekhnolohichnykh seredovyshch neliniinykh mekhanichnykh system obroblennia ta transportuvannia, Avtomatyzatsiia vyrobnychykh protsesiv v mashynobuduvanni ta pryladobuduvanni. Mizhhaluzevyi zbirnyk naukovykh prats. 2011, vyp. 45, s. 122–128 [in Ukrainian].
dc.relation.referencesen[5] B. I. Sokil, Periodychni Ateb-funktsii v doslidzhenni odnochastotnykh rozv‘iazkiv deiakykh khvylovykh rivnian. Pratsi naukovoho tovarystva im. Shevchenka. 1997. T.1. s. 588–592 [in Ukrainian].
dc.relation.referencesen[6] Yu. A. Mytropolskyi, Metod usrednenyia v nelyneinoi mekhanyke. K., Naukova dumka, 1971 [in Ukrainian]
dc.relation.referencesen[7] B. I. Sokil, Pro odyn sposib pobudovy odnochastotnykh rozviazkiv dlia neliniinoho khvylovoho rivniannia. Ukr.mat.zhurn. 1994. no. 6. s. 782–785. [in Ukrainian].
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Topilnytskyy V., Kabanov K., 2022
dc.subjectoscillation
dc.subjectasymptotic methods
dc.subjectenvironment
dc.subjectmathematical model
dc.subjectnonlinear mechanics
dc.titleMathematical model of dynamics of vibrating systems working environments
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v8n1_Topilnytskyy_V-Mathematical_model_of_44-50.pdf
Size:
265.04 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v8n1_Topilnytskyy_V-Mathematical_model_of_44-50__COVER.png
Size:
449.02 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: