The influence of cavitation on the phase-disperse state of hydrated calcium oxide

dc.citation.epage34
dc.citation.issue2
dc.citation.spage27
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМороз, О. М.
dc.contributor.authorМних, Р. В.
dc.contributor.authorMoroz, O. M.
dc.contributor.authorMnykh, R. V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2026-01-15T13:53:24Z
dc.date.created2024-10-10
dc.date.issued2024-10-10
dc.description.abstractДосліджено вплив кавітаційних явищ, збуджених ультразвуковим випромінюванням та у гідродинамічному кавітаторі струменевого типу, на зміну фазово-дисперсного стану гідратованого кальцію оксиду. Встановлено вплив умов кавітаційної активації кальцію гідроксиду на седиментаційну стійкість його суспензії. На основі аналізу інтенсивності седиментації частинок Са(ОН)2 після кавітаційного оброблення суспензії кальцію гідроксиду запропоновано ймовірний перебіг цього процесу у різні періоди часу. За рівнянням Стокса розраховано розподіл частинок за дисперсністю та встановлено динаміку зміни розмірів частинок залежно від питомої енергії, внесеної кавітаційними пристроями у суспензію. Виявлено, що після кавітаційної активації частинки Са(ОН)2 набувають заряду, завдяки якому змінюється фазовий стан кальцію гідроксиду, а його реакційна здатність зростатиме.
dc.description.abstractThe effect of cavitation phenomena excited by ultrasonic radiation and in a jet-type hydrodynamic cavitator on the change in the phase-dispersed state of hydrated calcium oxide was investigated. The influence of the conditions of cavitation activation of calcium hydroxide on the sedimentation stability of its suspension was established. Based on the analysis of the intensity of sedimentation of Ca(OH)2 particles after cavitation treatment of calcium hydroxide suspension, the probable course of this process in different time periods is proposed. According to the Stokes equation, the distribution of particles by dispersion was calculated, and the dynamics of particle size changes depending on the specific energy introduced into the suspension by cavitation devices were determined. It was established that after cavitation activation, Ca(OH)2 particles acquire a charge, due to which the phase state of calcium hydroxide changes, and its reactivity will increase.
dc.format.extent27-34
dc.format.pages8
dc.identifier.citationMoroz O. M. The influence of cavitation on the phase-disperse state of hydrated calcium oxide / O. M. Moroz, R. V. Mnykh // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 7. — No 2. — P. 27–34.
dc.identifier.citation2015Moroz O. M., Mnykh R. V. The influence of cavitation on the phase-disperse state of hydrated calcium oxide // Chemistry, Technology and Application of Substances, Lviv. 2024. Vol 7. No 2. P. 27–34.
dc.identifier.citationenAPAMoroz, O. M., & Mnykh, R. V. (2024). The influence of cavitation on the phase-disperse state of hydrated calcium oxide. Chemistry, Technology and Application of Substances, 7(2), 27-34. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOMoroz O. M., Mnykh R. V. (2024) The influence of cavitation on the phase-disperse state of hydrated calcium oxide. Chemistry, Technology and Application of Substances (Lviv), vol. 7, no 2, pp. 27-34.
dc.identifier.doihttps://doi.org/10.23939/ctas2024.02.027
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124464
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (7), 2024
dc.relation.references1. Trus I. M., Halysh V. V., Skyba M. I., Radovenchyk Ya. V., Homelia M. D. (2020). Novi vysokoefektyvni metody ochyshchennia vid rozchynnykh ta nerozchynnykh poliutantiv: monohrafiia. K.: Kondor Vydavnytstvo, 272 s. (In Ukrainian).
dc.relation.references2. Sheng, D. P .W., Bilad, M. R., Shamsuddin, N.(2023). Assessment and Optimization of Coagulation Process in Water Treatment Plant: A Review. ASEAN Journal of Science and Engineering, 3(1), 79–100. DOI:http://dx.doi.org/10.17509/
dc.relation.references3. Matilainen, A., Vepsäläinen, M., Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: A review. Advances in Colloid and Interface Science. Vol. 159, Iss. 2, 15 September 2010, 189–197. https://doi.org/10.1016/j.cis.2010.06.007
dc.relation.references4. Wang, S., Ang, H. M., Tadé, M. O. (2008). Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere, 72(11):1621–35.https://doi.org/10.1016/j.chemosphere.2008.05.013
dc.relation.references5. Hu, K., Zhao, Q. L., Chen, W., & Tang, F. (2017). Preparation of an aluminum and iron based coagulant from fly ash for industrial wastewater treatment. Clean-Soil, Air, Water, 45(9), 1600437. https://doi.org/10.1002/clen.201600437
dc.relation.references6. Pavel, K., Nikolay, K., & Oleg, F. (2017). Matrix-isolated nanocomposites alumina-silicon and iron-silicon flocculants-coagulants. Journal of Physical Science and Application, 2, 36–41. https://doi.org/10.17265/2159- 5348/2017.02.006
dc.relation.references7. Zhao, Y., Zheng, Y., Peng, Y., He, H., & Sun, Z.(2021). Characteristics of poly-silicate aluminum sulfate prepared by sol method and its application in Congo red dye wastewater treatment. RSC advances, 11(60),38208–38218.https://doi.org/10.1039/D1RA06343J
dc.relation.references8. Wang, R., Zhang, H., Lian, L., Wang, X., Zhu, B., & Lou, D. (2020). Flocculant Containing Silicon, Aluminum, and Starch for Sewage Treatment. Journal of Chemical Engineering of Japan, 53(10), 592–598.https://doi.org/10.1252/jcej.17we009
dc.relation.references9. Sun, T., Liu, L. L., Wan, L. L., & Zhang, Y. P. (2010). Effect of silicon dose on preparation and coagulation performance of poly-ferric-aluminum-silicatesulfate from oil shale ash. Chemical Engineering Journal, 163(1–2), 48–54. https://doi.org/10.1016/j.cej.2010.07.037
dc.relation.references10. Shablovski, V., Tuchkoskaya, A., Rukhlya, V., & Pap, O. (2021). Coagulant-flocculant from secondary resources for treatment of industrial and municipal wastewater. Water and water purification technologies. scientific and technical news, 30(2), 27–33.https://doi.org/10.20535/2218-930022021240165 138
dc.relation.references11. Song, Y. H., Luan, Z. K., & Tang, H. X.(2003). Preparation and characterisation of polyaluminium silicate chloride coagulant. Environmental technology, 24(3), 319–327. https://doi.org/10.1080/09593330309385564
dc.relation.references12. Zhang, W., Zhang, T., Xi, L., Gu, H., Hu, Y., Gu, H., & Zhang, Y. (2012). Preparation of new type poly-silicate coagulant and its coagulation property. Energy Procedia, 17, 1627–1634.https://doi.org/10.1016/j.egypro.2012.02.290
dc.relation.references13. Nowacka, A., Włodarczyk-Makuła, M., and Macherzyński, B. (2014). Comparison of effectiveness of coagulation with aluminum sulfate and pre-hydrolyzed aluminum coagulants. Desalination and Water Treatment, 52(19–21), 3843–3851. https://doi.org/10.1080/19443994.2014.888129
dc.relation.references14. Gao, B. Y., Yue, Q. Y.,Wang, B. J., &Chu, Y. B.(2003). Polyaluminum-silicate-chloride (PASiC)—a new type of composite inorganic polymer coagulant. Colloids and Surfaces A: Physicochemical and Engineering Aspects,229(1–3), 121127. https://doi.org/10.1016/j.colsurfa.2003.07.005
dc.relation.referencesen1. Trus I. M., Halysh V. V., Skyba M. I., Radovenchyk Ya. V., Homelia M. D. (2020). Novi vysokoefektyvni metody ochyshchennia vid rozchynnykh ta nerozchynnykh poliutantiv: monohrafiia. K., Kondor Vydavnytstvo, 272 s. (In Ukrainian).
dc.relation.referencesen2. Sheng, D. P .W., Bilad, M. R., Shamsuddin, N.(2023). Assessment and Optimization of Coagulation Process in Water Treatment Plant: A Review. ASEAN Journal of Science and Engineering, 3(1), 79–100. DOI:http://dx.doi.org/10.17509/
dc.relation.referencesen3. Matilainen, A., Vepsäläinen, M., Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: A review. Advances in Colloid and Interface Science. Vol. 159, Iss. 2, 15 September 2010, 189–197. https://doi.org/10.1016/j.cis.2010.06.007
dc.relation.referencesen4. Wang, S., Ang, H. M., Tadé, M. O. (2008). Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere, 72(11):1621–35.https://doi.org/10.1016/j.chemosphere.2008.05.013
dc.relation.referencesen5. Hu, K., Zhao, Q. L., Chen, W., & Tang, F. (2017). Preparation of an aluminum and iron based coagulant from fly ash for industrial wastewater treatment. Clean-Soil, Air, Water, 45(9), 1600437. https://doi.org/10.1002/clen.201600437
dc.relation.referencesen6. Pavel, K., Nikolay, K., & Oleg, F. (2017). Matrix-isolated nanocomposites alumina-silicon and iron-silicon flocculants-coagulants. Journal of Physical Science and Application, 2, 36–41. https://doi.org/10.17265/2159- 5348/2017.02.006
dc.relation.referencesen7. Zhao, Y., Zheng, Y., Peng, Y., He, H., & Sun, Z.(2021). Characteristics of poly-silicate aluminum sulfate prepared by sol method and its application in Congo red dye wastewater treatment. RSC advances, 11(60),38208–38218.https://doi.org/10.1039/D1RA06343J
dc.relation.referencesen8. Wang, R., Zhang, H., Lian, L., Wang, X., Zhu, B., & Lou, D. (2020). Flocculant Containing Silicon, Aluminum, and Starch for Sewage Treatment. Journal of Chemical Engineering of Japan, 53(10), 592–598.https://doi.org/10.1252/jcej.17we009
dc.relation.referencesen9. Sun, T., Liu, L. L., Wan, L. L., & Zhang, Y. P. (2010). Effect of silicon dose on preparation and coagulation performance of poly-ferric-aluminum-silicatesulfate from oil shale ash. Chemical Engineering Journal, 163(1–2), 48–54. https://doi.org/10.1016/j.cej.2010.07.037
dc.relation.referencesen10. Shablovski, V., Tuchkoskaya, A., Rukhlya, V., & Pap, O. (2021). Coagulant-flocculant from secondary resources for treatment of industrial and municipal wastewater. Water and water purification technologies. scientific and technical news, 30(2), 27–33.https://doi.org/10.20535/2218-930022021240165 138
dc.relation.referencesen11. Song, Y. H., Luan, Z. K., & Tang, H. X.(2003). Preparation and characterisation of polyaluminium silicate chloride coagulant. Environmental technology, 24(3), 319–327. https://doi.org/10.1080/09593330309385564
dc.relation.referencesen12. Zhang, W., Zhang, T., Xi, L., Gu, H., Hu, Y., Gu, H., & Zhang, Y. (2012). Preparation of new type poly-silicate coagulant and its coagulation property. Energy Procedia, 17, 1627–1634.https://doi.org/10.1016/j.egypro.2012.02.290
dc.relation.referencesen13. Nowacka, A., Włodarczyk-Makuła, M., and Macherzyński, B. (2014). Comparison of effectiveness of coagulation with aluminum sulfate and pre-hydrolyzed aluminum coagulants. Desalination and Water Treatment, 52(19–21), 3843–3851. https://doi.org/10.1080/19443994.2014.888129
dc.relation.referencesen14. Gao, B. Y., Yue, Q. Y.,Wang, B. J., &Chu, Y. B.(2003). Polyaluminum-silicate-chloride (PASiC)-a new type of composite inorganic polymer coagulant. Colloids and Surfaces A: Physicochemical and Engineering Aspects,229(1–3), 121127. https://doi.org/10.1016/j.colsurfa.2003.07.005
dc.relation.urihttp://dx.doi.org/10.17509/
dc.relation.urihttps://doi.org/10.1016/j.cis.2010.06.007
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2008.05.013
dc.relation.urihttps://doi.org/10.1002/clen.201600437
dc.relation.urihttps://doi.org/10.17265/2159-
dc.relation.urihttps://doi.org/10.1039/D1RA06343J
dc.relation.urihttps://doi.org/10.1252/jcej.17we009
dc.relation.urihttps://doi.org/10.1016/j.cej.2010.07.037
dc.relation.urihttps://doi.org/10.20535/2218-930022021240165
dc.relation.urihttps://doi.org/10.1080/09593330309385564
dc.relation.urihttps://doi.org/10.1016/j.egypro.2012.02.290
dc.relation.urihttps://doi.org/10.1080/19443994.2014.888129
dc.relation.urihttps://doi.org/10.1016/j.colsurfa.2003.07.005
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.subjectкоагуляція
dc.subjectкоагулянти
dc.subjectочищення природних і стічних вод
dc.subjectультразвукова кавітація
dc.subjectгідродинамічна кавітація
dc.subjectкальцію оксид
dc.subjectкальцію гідроксид
dc.subjectморфологія поверхні
dc.subjectседиментація
dc.subjectелектрокінетичний потенціал
dc.subjectcoagulation
dc.subjectcoagulants
dc.subjectpurification of natural and wastewater
dc.subjectultrasonic cavitation
dc.subjecthydrodynamic cavitation
dc.subjectcalcium oxide
dc.subjectcalcium hydroxide
dc.subjectsurface morphology
dc.subjectsedimentation
dc.subjectelectrokinetic potential
dc.titleThe influence of cavitation on the phase-disperse state of hydrated calcium oxide
dc.title.alternativeВплив кавітації на фазово-дисперсний стан гідратованого кальцію оксиду
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v7n2_Moroz_O_M-The_influence_of_cavitation_27-34.pdf
Size:
540.9 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: