The influence of cavitation on the phase-disperse state of hydrated calcium oxide
| dc.citation.epage | 34 | |
| dc.citation.issue | 2 | |
| dc.citation.spage | 27 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Мороз, О. М. | |
| dc.contributor.author | Мних, Р. В. | |
| dc.contributor.author | Moroz, O. M. | |
| dc.contributor.author | Mnykh, R. V. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2026-01-15T13:53:24Z | |
| dc.date.created | 2024-10-10 | |
| dc.date.issued | 2024-10-10 | |
| dc.description.abstract | Досліджено вплив кавітаційних явищ, збуджених ультразвуковим випромінюванням та у гідродинамічному кавітаторі струменевого типу, на зміну фазово-дисперсного стану гідратованого кальцію оксиду. Встановлено вплив умов кавітаційної активації кальцію гідроксиду на седиментаційну стійкість його суспензії. На основі аналізу інтенсивності седиментації частинок Са(ОН)2 після кавітаційного оброблення суспензії кальцію гідроксиду запропоновано ймовірний перебіг цього процесу у різні періоди часу. За рівнянням Стокса розраховано розподіл частинок за дисперсністю та встановлено динаміку зміни розмірів частинок залежно від питомої енергії, внесеної кавітаційними пристроями у суспензію. Виявлено, що після кавітаційної активації частинки Са(ОН)2 набувають заряду, завдяки якому змінюється фазовий стан кальцію гідроксиду, а його реакційна здатність зростатиме. | |
| dc.description.abstract | The effect of cavitation phenomena excited by ultrasonic radiation and in a jet-type hydrodynamic cavitator on the change in the phase-dispersed state of hydrated calcium oxide was investigated. The influence of the conditions of cavitation activation of calcium hydroxide on the sedimentation stability of its suspension was established. Based on the analysis of the intensity of sedimentation of Ca(OH)2 particles after cavitation treatment of calcium hydroxide suspension, the probable course of this process in different time periods is proposed. According to the Stokes equation, the distribution of particles by dispersion was calculated, and the dynamics of particle size changes depending on the specific energy introduced into the suspension by cavitation devices were determined. It was established that after cavitation activation, Ca(OH)2 particles acquire a charge, due to which the phase state of calcium hydroxide changes, and its reactivity will increase. | |
| dc.format.extent | 27-34 | |
| dc.format.pages | 8 | |
| dc.identifier.citation | Moroz O. M. The influence of cavitation on the phase-disperse state of hydrated calcium oxide / O. M. Moroz, R. V. Mnykh // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 7. — No 2. — P. 27–34. | |
| dc.identifier.citation2015 | Moroz O. M., Mnykh R. V. The influence of cavitation on the phase-disperse state of hydrated calcium oxide // Chemistry, Technology and Application of Substances, Lviv. 2024. Vol 7. No 2. P. 27–34. | |
| dc.identifier.citationenAPA | Moroz, O. M., & Mnykh, R. V. (2024). The influence of cavitation on the phase-disperse state of hydrated calcium oxide. Chemistry, Technology and Application of Substances, 7(2), 27-34. Lviv Politechnic Publishing House.. | |
| dc.identifier.citationenCHICAGO | Moroz O. M., Mnykh R. V. (2024) The influence of cavitation on the phase-disperse state of hydrated calcium oxide. Chemistry, Technology and Application of Substances (Lviv), vol. 7, no 2, pp. 27-34. | |
| dc.identifier.doi | https://doi.org/10.23939/ctas2024.02.027 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/124464 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (7), 2024 | |
| dc.relation.references | 1. Trus I. M., Halysh V. V., Skyba M. I., Radovenchyk Ya. V., Homelia M. D. (2020). Novi vysokoefektyvni metody ochyshchennia vid rozchynnykh ta nerozchynnykh poliutantiv: monohrafiia. K.: Kondor Vydavnytstvo, 272 s. (In Ukrainian). | |
| dc.relation.references | 2. Sheng, D. P .W., Bilad, M. R., Shamsuddin, N.(2023). Assessment and Optimization of Coagulation Process in Water Treatment Plant: A Review. ASEAN Journal of Science and Engineering, 3(1), 79–100. DOI:http://dx.doi.org/10.17509/ | |
| dc.relation.references | 3. Matilainen, A., Vepsäläinen, M., Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: A review. Advances in Colloid and Interface Science. Vol. 159, Iss. 2, 15 September 2010, 189–197. https://doi.org/10.1016/j.cis.2010.06.007 | |
| dc.relation.references | 4. Wang, S., Ang, H. M., Tadé, M. O. (2008). Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere, 72(11):1621–35.https://doi.org/10.1016/j.chemosphere.2008.05.013 | |
| dc.relation.references | 5. Hu, K., Zhao, Q. L., Chen, W., & Tang, F. (2017). Preparation of an aluminum and iron based coagulant from fly ash for industrial wastewater treatment. Clean-Soil, Air, Water, 45(9), 1600437. https://doi.org/10.1002/clen.201600437 | |
| dc.relation.references | 6. Pavel, K., Nikolay, K., & Oleg, F. (2017). Matrix-isolated nanocomposites alumina-silicon and iron-silicon flocculants-coagulants. Journal of Physical Science and Application, 2, 36–41. https://doi.org/10.17265/2159- 5348/2017.02.006 | |
| dc.relation.references | 7. Zhao, Y., Zheng, Y., Peng, Y., He, H., & Sun, Z.(2021). Characteristics of poly-silicate aluminum sulfate prepared by sol method and its application in Congo red dye wastewater treatment. RSC advances, 11(60),38208–38218.https://doi.org/10.1039/D1RA06343J | |
| dc.relation.references | 8. Wang, R., Zhang, H., Lian, L., Wang, X., Zhu, B., & Lou, D. (2020). Flocculant Containing Silicon, Aluminum, and Starch for Sewage Treatment. Journal of Chemical Engineering of Japan, 53(10), 592–598.https://doi.org/10.1252/jcej.17we009 | |
| dc.relation.references | 9. Sun, T., Liu, L. L., Wan, L. L., & Zhang, Y. P. (2010). Effect of silicon dose on preparation and coagulation performance of poly-ferric-aluminum-silicatesulfate from oil shale ash. Chemical Engineering Journal, 163(1–2), 48–54. https://doi.org/10.1016/j.cej.2010.07.037 | |
| dc.relation.references | 10. Shablovski, V., Tuchkoskaya, A., Rukhlya, V., & Pap, O. (2021). Coagulant-flocculant from secondary resources for treatment of industrial and municipal wastewater. Water and water purification technologies. scientific and technical news, 30(2), 27–33.https://doi.org/10.20535/2218-930022021240165 138 | |
| dc.relation.references | 11. Song, Y. H., Luan, Z. K., & Tang, H. X.(2003). Preparation and characterisation of polyaluminium silicate chloride coagulant. Environmental technology, 24(3), 319–327. https://doi.org/10.1080/09593330309385564 | |
| dc.relation.references | 12. Zhang, W., Zhang, T., Xi, L., Gu, H., Hu, Y., Gu, H., & Zhang, Y. (2012). Preparation of new type poly-silicate coagulant and its coagulation property. Energy Procedia, 17, 1627–1634.https://doi.org/10.1016/j.egypro.2012.02.290 | |
| dc.relation.references | 13. Nowacka, A., Włodarczyk-Makuła, M., and Macherzyński, B. (2014). Comparison of effectiveness of coagulation with aluminum sulfate and pre-hydrolyzed aluminum coagulants. Desalination and Water Treatment, 52(19–21), 3843–3851. https://doi.org/10.1080/19443994.2014.888129 | |
| dc.relation.references | 14. Gao, B. Y., Yue, Q. Y.,Wang, B. J., &Chu, Y. B.(2003). Polyaluminum-silicate-chloride (PASiC)—a new type of composite inorganic polymer coagulant. Colloids and Surfaces A: Physicochemical and Engineering Aspects,229(1–3), 121127. https://doi.org/10.1016/j.colsurfa.2003.07.005 | |
| dc.relation.referencesen | 1. Trus I. M., Halysh V. V., Skyba M. I., Radovenchyk Ya. V., Homelia M. D. (2020). Novi vysokoefektyvni metody ochyshchennia vid rozchynnykh ta nerozchynnykh poliutantiv: monohrafiia. K., Kondor Vydavnytstvo, 272 s. (In Ukrainian). | |
| dc.relation.referencesen | 2. Sheng, D. P .W., Bilad, M. R., Shamsuddin, N.(2023). Assessment and Optimization of Coagulation Process in Water Treatment Plant: A Review. ASEAN Journal of Science and Engineering, 3(1), 79–100. DOI:http://dx.doi.org/10.17509/ | |
| dc.relation.referencesen | 3. Matilainen, A., Vepsäläinen, M., Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: A review. Advances in Colloid and Interface Science. Vol. 159, Iss. 2, 15 September 2010, 189–197. https://doi.org/10.1016/j.cis.2010.06.007 | |
| dc.relation.referencesen | 4. Wang, S., Ang, H. M., Tadé, M. O. (2008). Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere, 72(11):1621–35.https://doi.org/10.1016/j.chemosphere.2008.05.013 | |
| dc.relation.referencesen | 5. Hu, K., Zhao, Q. L., Chen, W., & Tang, F. (2017). Preparation of an aluminum and iron based coagulant from fly ash for industrial wastewater treatment. Clean-Soil, Air, Water, 45(9), 1600437. https://doi.org/10.1002/clen.201600437 | |
| dc.relation.referencesen | 6. Pavel, K., Nikolay, K., & Oleg, F. (2017). Matrix-isolated nanocomposites alumina-silicon and iron-silicon flocculants-coagulants. Journal of Physical Science and Application, 2, 36–41. https://doi.org/10.17265/2159- 5348/2017.02.006 | |
| dc.relation.referencesen | 7. Zhao, Y., Zheng, Y., Peng, Y., He, H., & Sun, Z.(2021). Characteristics of poly-silicate aluminum sulfate prepared by sol method and its application in Congo red dye wastewater treatment. RSC advances, 11(60),38208–38218.https://doi.org/10.1039/D1RA06343J | |
| dc.relation.referencesen | 8. Wang, R., Zhang, H., Lian, L., Wang, X., Zhu, B., & Lou, D. (2020). Flocculant Containing Silicon, Aluminum, and Starch for Sewage Treatment. Journal of Chemical Engineering of Japan, 53(10), 592–598.https://doi.org/10.1252/jcej.17we009 | |
| dc.relation.referencesen | 9. Sun, T., Liu, L. L., Wan, L. L., & Zhang, Y. P. (2010). Effect of silicon dose on preparation and coagulation performance of poly-ferric-aluminum-silicatesulfate from oil shale ash. Chemical Engineering Journal, 163(1–2), 48–54. https://doi.org/10.1016/j.cej.2010.07.037 | |
| dc.relation.referencesen | 10. Shablovski, V., Tuchkoskaya, A., Rukhlya, V., & Pap, O. (2021). Coagulant-flocculant from secondary resources for treatment of industrial and municipal wastewater. Water and water purification technologies. scientific and technical news, 30(2), 27–33.https://doi.org/10.20535/2218-930022021240165 138 | |
| dc.relation.referencesen | 11. Song, Y. H., Luan, Z. K., & Tang, H. X.(2003). Preparation and characterisation of polyaluminium silicate chloride coagulant. Environmental technology, 24(3), 319–327. https://doi.org/10.1080/09593330309385564 | |
| dc.relation.referencesen | 12. Zhang, W., Zhang, T., Xi, L., Gu, H., Hu, Y., Gu, H., & Zhang, Y. (2012). Preparation of new type poly-silicate coagulant and its coagulation property. Energy Procedia, 17, 1627–1634.https://doi.org/10.1016/j.egypro.2012.02.290 | |
| dc.relation.referencesen | 13. Nowacka, A., Włodarczyk-Makuła, M., and Macherzyński, B. (2014). Comparison of effectiveness of coagulation with aluminum sulfate and pre-hydrolyzed aluminum coagulants. Desalination and Water Treatment, 52(19–21), 3843–3851. https://doi.org/10.1080/19443994.2014.888129 | |
| dc.relation.referencesen | 14. Gao, B. Y., Yue, Q. Y.,Wang, B. J., &Chu, Y. B.(2003). Polyaluminum-silicate-chloride (PASiC)-a new type of composite inorganic polymer coagulant. Colloids and Surfaces A: Physicochemical and Engineering Aspects,229(1–3), 121127. https://doi.org/10.1016/j.colsurfa.2003.07.005 | |
| dc.relation.uri | http://dx.doi.org/10.17509/ | |
| dc.relation.uri | https://doi.org/10.1016/j.cis.2010.06.007 | |
| dc.relation.uri | https://doi.org/10.1016/j.chemosphere.2008.05.013 | |
| dc.relation.uri | https://doi.org/10.1002/clen.201600437 | |
| dc.relation.uri | https://doi.org/10.17265/2159- | |
| dc.relation.uri | https://doi.org/10.1039/D1RA06343J | |
| dc.relation.uri | https://doi.org/10.1252/jcej.17we009 | |
| dc.relation.uri | https://doi.org/10.1016/j.cej.2010.07.037 | |
| dc.relation.uri | https://doi.org/10.20535/2218-930022021240165 | |
| dc.relation.uri | https://doi.org/10.1080/09593330309385564 | |
| dc.relation.uri | https://doi.org/10.1016/j.egypro.2012.02.290 | |
| dc.relation.uri | https://doi.org/10.1080/19443994.2014.888129 | |
| dc.relation.uri | https://doi.org/10.1016/j.colsurfa.2003.07.005 | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2024 | |
| dc.subject | коагуляція | |
| dc.subject | коагулянти | |
| dc.subject | очищення природних і стічних вод | |
| dc.subject | ультразвукова кавітація | |
| dc.subject | гідродинамічна кавітація | |
| dc.subject | кальцію оксид | |
| dc.subject | кальцію гідроксид | |
| dc.subject | морфологія поверхні | |
| dc.subject | седиментація | |
| dc.subject | електрокінетичний потенціал | |
| dc.subject | coagulation | |
| dc.subject | coagulants | |
| dc.subject | purification of natural and wastewater | |
| dc.subject | ultrasonic cavitation | |
| dc.subject | hydrodynamic cavitation | |
| dc.subject | calcium oxide | |
| dc.subject | calcium hydroxide | |
| dc.subject | surface morphology | |
| dc.subject | sedimentation | |
| dc.subject | electrokinetic potential | |
| dc.title | The influence of cavitation on the phase-disperse state of hydrated calcium oxide | |
| dc.title.alternative | Вплив кавітації на фазово-дисперсний стан гідратованого кальцію оксиду | |
| dc.type | Article |